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PREFACE TO THE THIRD LDITION

I~ preparing this new edition the text has been carefully: I:E\ViSCd,
and considerable new natter has been introduced withgi ‘altering
the numbering of the sections or the character and aigityof the book.

The use of the apper and lower limits of 1r1dotc,rmmafmn simplifies
some of the proofs of tho earlier edition. liddltmn:ﬂ tegls for
uniform couvergenee of series are included N 'f?'rm. by term hitegra-
tion and the Secoml Theorem of Mean Voliw are treated mors fully,
The sets of examples on Infinite Sgfis and Integrals have been
enlarged by the insertion of qnbstrom I(ll;fmg} from recent Cambridge
Heholarship and In’rprroﬁwmte ,xdmmﬁiongs, 23 well as from the
papery sel m the \Ta’rhem&ttml Tripos. The introduetion of {une-
i tions of hownded va.rla.tw}} extends the class of funetions to which
the clementary disougsion of Fonrier's Sevics given in the fext
applies, m<

In the Lh&p&%&; dealmg particularly with Fourier’s Series space
has beom found lor the Riemann-Lebesgue Theorem and its conse-
(UANCeS) .md for Parseval’s Theorem under fairly general con-

dmonn\
fiho) all ordinary purposes the discussion of the properiies of
L wirier’s Series and Fourder’s Constants givert in the text will, it is
N fﬂ')pf&:'l, be found both sufficient and satisfactory,

3 For the specialist who wishes to go further a treatment of the
Lebesgue Definite Integral is given in a new Appendix, which takes
the place of the former Appendix containing a detailed Iyilnliogrztphy
of Trigonometrieal and Fourier’s Serics. In this Appendix T have

tried to show, in as simple a way as possible, what the Lebesgne
lntegral is, and . what respects the rules to which it is subject
differ from, and are superior to, those for Lhe classical Riemann

?

Integral.




vi PREFACE TO THE THIRD EDITION

So many papers are being written on Trigonometrical Series, and
ont Fourier’s Series, Fourier’s Constants, and Founrier’s Integrals, that
a mere list of their titles, brought up to date, would cover many
pages. And it is doubtful if such a list is of much value to the
student. In any case he has now at his disposal other works from
which bibliographical information of this kind can be obtained, It
is hoped that the lists of bools and memoirs given at the ends of thel
chapters and of Appendix 11 will make up for the omission of, the’
detailed bibliography. \\

In the revision of part of the proofs I ava fortunate in }grvﬁkng had
the assistance of Mr., George Walker of the Universi f ot Syduey,
and now at Emmanuel College, Cambridge. His efitigism and sug-

gestions have been of great service to me. ) QU' S CARSLAW.
EmmanvieL COLTEGT, \ "\
CAMBRIDGE, 24th Septernber, 10248, O N

WOWWL dbraullbra.kx org.in
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PREFACE TO THE SECOND EDITION

Tris book forms the first volume of the new edition of my bdek on
Fourier’s Series and Integrals and the Mathematical Thebry’ of the
Conduction of Heot, published in 1906, and now for som@\tinie out of
print. Since 1906 so much advauce has been made, iﬁ"tﬁe Theory of
Fourler’s Serles and Integrals, as well as in the/mmathematical dis-
cussion of Heat Conduction, that it has secm"éc}?smdvisa.ble to write
a completely new work, and to 1ssue the Sghge in two volumes. The
first volume, which now appears, is coferned with the Theory of
Infinite Hecries and Imtegrals,quushiigpesinbrederence to Fourier’s
Series and Integrals. The secondwolume will be devoted to the
Mathematical Theory of the v(Z‘I’)’r:if’lUuzir,i_on of ITeat,

No one can properly m}ﬁ‘éfstan& Fourier's Series and Integrals
without a knowledge of What is involved in the convergence of
infinite series and ipt@fgrals. With these questions is bound up the
development of heidea of a limit and = function, and both are
founded upon'dhe modern theory of real numbers, The first threc
chapters Wéal with these matters. In Chapter IV the Definite
Integralﬁié'freated from Riemann’s point of view, and special atten-
t-ion@?gﬁen 10 the question of the convergence of infinite integrals.
’[.‘bf&heory of series whose terms are {unctions of a single variable,

<nd the theory of integrals which contain an arbifrary parameter
“are discussed in Chapters V and VL. It will be seen that the two
theories are closely related, and can be developed on similar lines.

The trestment of Fourier’s Series in Chapter VII depends on
Dirichlet’s Integrals. There, and elsewhere throughout the book,
the Second Theorem of Mean Value will be found an essential part
of the argnment. In the same chapter the work of Poisson is
adapted to modern standards, and a prominent place is given to

Fejér’s work, both in the proof of the fundamental theorem and in
“vii



viii FREFACE TO THE SECOND EDITION

the discussion of the convergence of Fourier’s Bertes,  Chapter IX
1s devoted to Gibb's Ihenomenon, and the last chapter to Fourier’s
Integrals. In this chapter the work of Pringsheim, who Liag greatly
extended the class of functions to which Fourier’s Integral Theorem
applies, has been used.

Two appendices are added. The first deals with Proactical Hor-
nonie Analysis and Periodogram Analysis.  In the second a biblig-
graphy of the subject is given. & \)

The functions treated in this book arc * ordinary 7 {upctions.
An interval (g, 5) for which f{z) is dofined can be 1)rokcu}ﬁiﬁ"&}1{'.-0 a
finite number of open partial intervals, in cach of whighlthe [unction
is monotonic. If infinities oceur in the range, thexane izolated and
finite in numhber. Such functions wiil «umsI) TQ( demands of the
Applied Mathematician, S\

The modern theory of integration, :Lsst)t.ieitetl_ chielly with the
name of Lebesgue, ha-é',&QJ_%}Q&‘!{_ETEFSQ:@%E(}“r_|.‘.h:‘:01‘_}-’ of Fourier’s
Series and Integrals hmetions of affar more eomplicated nature.
Various writers, notably W. H. Yéii’ng, are engaged m building wp a
theory of these and applied ghrivs much more advanced than any-
thing treated in thig bnok‘ h hese developments are in the mean-
time chiefly 111f(‘r95’rmﬂ}\9 the Pure Mathematiclan specialising in
the Theory of Funcﬁonq of a Real Variable, My purpose has been
to Temove some.df the difficulties of the Applied Mathematician,

The prep%‘);t}on of this book has occupied some time, and much
of it has betugiven as a final course in the Infinitesimal Calculus to
my students. To them it owes mmch. TFor assistance in the
reyision’ of the proofs and for many valuahle suggestions, Lam much
indsbted to Mr. E. M. Wellish, Mr. R. J. Lyons, and Mr. H. 1L
Thorne of the Department of Mathematics in the University of
Sydney. IL 8. CARSLAW.

Emmanven (OLLREE,
CAMBRILGE, Jun. 1927,
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HISTORICAL INTRODUCTION O\

A trigonometrical series . O
@y +{¢y €08 & +dy sin Z) + (@, cos 3z +-b, sin )a“I +e

1s said to be a Fourier’s Series, if the constdnts,&o, @y, by, ... satisly

the equations

1 w\J
L w3

j.wwﬁ{d}:cmumdﬁyicrg in
n=1,
b= lj. f{&)‘sm nr di Jn

_.,-,.’

@y =

and the Fourier's Seriegig said to correspond to the function f(z)

In many importapdcases the sum of the Fouricr’s Series v»lu(,h
corresponds fo f(x{\s equal to f(z); but if the function is arbitrary,
there is no a Pwiors reason that the series should converge at all
in the mterva,l {—, =), nor, if it does converge at a point, is there
any o p;m{@ Teason that its sum for that value of z shonld be f(z)

Foufier’in his Théorie analytique de In Chaleur (1822) was the
ﬁrst['% assert that an arbitrary function, given in the interval

(.f—‘:}fr, ), could be expressed in this way. He proved quite rigor-
~\ously that the expansion is true for certain simple funetions, which

" he needed in the problems of the conduction of heat; and, though

he did not develop his proof for the general ease with the precision
the importance of the theorem demanded, the substantial accuracy
of his method must be admitted. That the expansion was possible

*Thig correapondenee is sometimes denoled by
. )
Flw)~—ay+ S, cos ne + by, s v,
1

the notation being duo to Hurwits, Math. dnralen, 57 (1903), 427,
.1, A



32 HISTORICAL INTRODUCTION

in the case of an arbitrary function, as such was understood at that
time, was assumed to be true from the date at which his work
became known. Since then these series have been freely used in
the solutioh of the differential equations of mathematical physics.
For this reason they are now called Fourier’s Series—or the
Fourier's Series corresponding to the function f{z)—and the
coeflicients in the series,

1

A7

" 1{" sin
[_,,f(x) de, ?J_,,ﬂa’) cos e, O\
are called Fourier's Coefficients, or Fourier's Constants, for {hat
funetion, N
'The Theory of Fourier's Series has had—and still is"Baving—
an immense influence on the development of the theory"‘q\f functions
of a real variable, and the influence and importance\of these series
in this field are comparable with those of the pawer series in the
general theory of functions, _ o
FIRYR, VRO HEHA9In
The question of the possibility of.fhe expansion of an arbitrary
function of z in a trigonometricaliseries of sincs and cosines of
nudtiples of # arose in the middle of the eighteenth centary in
connection with the problena”a\f the vibration of strings.
The theory of these vibyations reduces ta the solution of the
differential equation ()
N Ty
7. e T e
aud the early %E’ttempts at its solution were made by d'Alembert,™*
Fuler.t agd\D. Bernoulli.f Both d’Alembert and Euler obtained
 the ,-iel:uﬁj’ozi in the functional form

\; y={x +at) +yplx - at).

The principal difference between them lay in the fact that
d"Alembert supposed the initial form of the string $o be given
;'; by a single analytical expression, while Fuler regarded it as lying
. along any arbitrary continuous curve, different parts of which
* might be given by different analytical expressions. Bernoulli, on

* Wén. de Udeadénde de Berfin, 3 (1747), 214,
Hac. cit., 4 {1748}, 60, {loe. cit., 9 (1753), 173,
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the other hand, gave the solution, when the string starts from rest,
in the form of a trigonometrical series

y=2A, sin & cos at +d, 8in 22 cos Zat +...

and he assertcd that this soluticn, being perlectly gencral, must
contain those given by Euler and d'Alembert. The importance
of his discovery was immediately recognised, and Buler pointed
out that if this statement of the solution were corrvect, an arbitrary
function of a single variable must he developable in an ‘finite
series of sines of multiples of the variable. This he/held to be
obviously impossible, since a series of sines is hoth(Periodic and
odd, and he argued that if the arbitrary function. *Ea;d not both of
these properties 1t could not be expanded in such 3 geries.

Yhile the debate was at this stage a memo}' appeared in 1759%
by Lagrange, then a young and unkndWr mathematician, in
which the problem was examined frony’ satotally different point of
view. While he accepted Euler’s soPatlon as the most general, he
objected fo the mode of demons at1 and he E)rop():,ed o obtain
a satisfactory solution by \ﬁrs ggﬁs erltygm e case of a finite
number of particles th‘ttC]IBd on s weightless string. From the
solution of this problem. Jts deduced that of a continnons string by
making the number gf partlcles infinite.f In this way he showed
that when the 113’13,713} displacement of the string of unit length is
given by flz) and the initial velocity by F(z), the displaccment
at fime ¢ is given by

- N \ 1o . .
A ‘y:QI >’ (sin nrz’ sin nrw cos nwat) f(#')dz’

o T
s g
N\~ 2

121 . .
h) - e r " T .f .i"
. s +a].0 21 - {(sin nare” 8l wwe sin nral) (e Ydx
i \ This result and the discussion of the problem which Lagrange

\ ) gave in this and other memoirs have prompted some mathe-
maticians to deny the importance of Fourier’s discoveries, and to
attribute to Lagrange the priority in the proof of the development
of an arbitrary function in frigonometrical series. It is true
that in the formula guoted above it is only necessary to change
the order of summation and integration, and to put ¢=0, in order

*(f. Lagrange, Fuvres, 1 (Paris, 1867}, 37.
tloe. cit., §37.
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that we may obtain the development of the function f{z) in a
series of sines, and that the coeflicients shall #ake the definite
integral forms with which we are now familiar. Still Lagrange
did not take this step, and, as Burkhardt remasks,* the fact that
he did not do so iz a very instructive example of the ease with
which an author omits to draw an almost obvious conclusion
from his results, when his investigation has been undertaken
with another end in view. Lagrange’s purpose was to demons&
strate the truth of Euler’s solution and to defend its gener‘al
conclusions against d’Alembert’s attacks. When he had obsamed
his solution, he therefore proceeded to transform it into the Tune-
tional form given by Ruler. Having succeeded in thw) He held
his demonstration to be complete.

The further development of the theory of these séries was due
to the astronomical problem of the expansipi\gf the reciprocal
of the distance between two planets in af deries of cosines of
multiples of the angle between the radii\VAs early as 1749 and
1754 d’Alembert and, Fulas ahmi)raqb&é@ﬁ:d discussions of this
question in which the idea of the deﬁmte integral expressions for
the coefficients in Fourier’s Sempa may be traced, and Clairaut, in
1757,} gave his results in & form Which practically contained these
coefficients. Again, Euler,‘,{; in a paper written in 1777 and
published in 1793, act aly employed the method of multiplying
both sides of the equation

flzt=q, +2aq 008 & +2ay €08 2% + ...+ 2a,, oS 1T +.

by cosnz ands mtegratmg the series term by term between the
limits 0 ank?r In this way he found that

\ \ I fiz) cos nx d.

AN

{45 curious that these papers seem to have had no effect upon
the discussion of the problem of the Vibrations of Strings in which,
a3 we have seen, &' Alembert, Kuler, Bernonlli, and Lagrange were
about the same time engaged. The explanation is probably to
be found in the fact that these results were not accepted with

*Burkhardt, “Entwicklungen nach oscillirenden Funetionen,” Jahresber. d.
Math. Ver., Leipzig, 10, Heft 1T (19013}, 32.

tParis, Hist, Acad. Sci. (1754 [539]), Art. iv. (July 1757).
i Petrop. N. deta, 11 {1793 [98]), p. 94 (May 17770,
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confidence, and that they were only used in determining the
coefiicients of expansions whose existence could be demonstrated

by other means.

It was left to Fourier to place our knowledge of the theory of
trigonometrical series on a firmer foundation.

The methods he adopted were suggested by the problems he met
in the Mathematical Theory of the Conduction of Heat. He dis-
cussed the subject in various memoirs, the most important hawng
been presented to the Paris Academy in 1811, although it{wa5 not

printed till 1824-6.

These memoirs are pmctlcally qOntained in

hig book, Théorie analytigue de la Chalenr (1832). An\a Tnumber of
gpecial cases he verifled that a function f{z) gzven in‘the interval
(=, 7}, can be expressed as the sum of the gexies

g + (@) €08 T +b, sin z) 4 (a4 cos 23 by sin 22) + ...

where

w‘\

ao:%_[:f(m)dx, G = _[\f ) cos nx dx,

b= m%mmwh

Some of the proofs he gaye™ $or the general case of an arbitrary
function are far from rigoteus. One is the same as that given by
Euler. But in his ﬁn iNdiscussion of the general case (Cf. §§ 415,
416 and 423), the thod he employs is perfectly gound, and not

unlike that whic

lrlchlet used later in his classical memotr.

However, this ,dlscussmn is little more than a sketch of a proof,
and 1t coptéi}ls no reference to the conditions which the arbitrary
functiqz(x}nist satisfy.

Fo\q{mnr made no claim to the discovery of the values of the

coelficients

£\
R
\, W

\ 3

1 w
%_2_71-.[ i} Sz)de,
af‘,,:-?-lrj.rr Sflz) eos nx di, 1
B n=1,
bn:}J- flz) sin nz dz,
T

We have already seen that they were employed both by Clairaut
and Euler before this time. Still there is an important difference
between Fourier’s interpretation of these integrals and that which
was current among the mathematicians of the eighteenth century.

o
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The earlier writers by whom they were employed (with the possible
exception of Clairaut) applied them to the determination of the
coefficients of series whose existence had been demonstrated by
other means. Fourier was the first to apply them to the repre-
sentation of an entirely arbitrary function, in the sense in which
that sum was then understood. In this he made a distinet advance
upon his predecessors. Indeed Riemann* asserts that when
Fourier, in his first paper to the Paris Academy in 1807, statdd
that a completely arbitrary function could be expressed in gnch a
serjes, hig statement so surprised Lagrange that he dgni?zd the
possibility in the most definite terms. Tt should alse Lg'wioted that
he was the first to allow that the arbitrary function \zrﬁght be given
by different analytical expressions in different pa¥gsiof the interval;
also that he asserted that the sine series couldNie used for other
funetions than odd ones, and the cosine scriﬁs Tor other funetions
than even ones. Further, he was the ﬁr}t to see that, when a
function is defined for a given range of the variable, its value outside
that range is in no way,dptprminedy ind.ib follows that no one
before him can have properly alpdlerstood the representation of
an arbitrary function by a trigénometrical series.

The treatment which his{®ork received from the Paris Academy
15 evidence of the doub'ﬁz\vith which his contemporaries viewed
his arguments and_réghlts. His first paper upon the Theory of
Heat was presented in 1807. The Academy, wishing to en-
courage the aytlior to extend and improve his theory, made the
question of e propagation of heat the subject of the grand priz
de -nmt?aé?(afi;nges for 1812. Fourier submitted his Mémotre sur
la propigiiion de la Chaleur at the end of 1811 as a candidate for
theprize. The memoir was referred to Laplace, Lagrange,
Légendre, and the other adjudicators; but, while awarding him
tHe prize, they qualified their praise with criticisms of the rigour
of his analysis and methods,} and the paper was not published at

*Cf. Riemann, “Uber dis Durstellbarkeit einer Function durch eine trigone-
metrische Reihe,” Géttingen, Abh. Ges. Wiss, 13 (1867), § 2, and Mathematische
Werke (2 Aufl,, 1892}, p. 252,

tTheir repors is quoted by Darboux in his Introduction (p. vii} to (Buvres de
Fouricr, T. 1:—-"Cette piéce renferme les véritables équations différentielles de la
transraission de Ja chaleur, soit i l'intérisur des corps, soit & leur surface; et la
nouveauté du suje, jointe & son importance, a déterminé la Classe A couronner cet
Ouvrage, en observant cependant gue la maniére dont 1"Anteur parvient i ses
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the time in the Mémoires de I Academie des Sciences. Fourier
always resented the treatment he had reccived. When publishing
his trcatise in 1822, he incorpovated in it, practically without
change, the first part of this memoir; and two years later, having
become Secretary of the Academy on the death of Delambre, he
caused his original paper, in the form in which it had heen com-
municated in 1811, to be published in these Mémorres.k Probaliy
this step was taken to secure to himself the priority in his dis-
coveries, in consequence of the aftention the subject was récelvlncr
at the hands of other mathematicians. It is also possible Jthat he
wished to show the injustice of the criticisms which\had been
passed upon his work.  After the publication of hi&(freatise, when
the results of his different memoirs had beedid known, it was
recognised that real advance had been madesby him in the dis-
cussion of the subject and the substantial a&umcv of his reasoning
was admitted.§ O

A

3

Gipuations n'est pas exempte de di 1t, pour les intéorer,
. P P \‘a}ﬁfjr%hﬁ‘lﬁ Ei"f{ PRy ¥

lajsse cncore quelqut, Lh()se a d(_‘ilrer, 80l Telativement & [ penéralité, soit méme
du coté de la rigueur.”

s Mémoires de I dead, des Se., 4, p 1&:, and &, p. 153.

§1t is interesting to notc t\c following refercnces to his work in the writings of
modern mathematicians: ¢

Kelvin, Coll, Works, \{ Ilf_ p. 192 {Article on “Heat,” Enc. Hrit., 1878).

“Returning to thedquestion of the Conduction of Heat, we ha.\P firat of all to
say that the theory.ofit was discovercd by Fourier, and given to the world through
the Franch ;&cadeﬁs}"m hiz Fhéarie analytigue de In Chalewr, with solutions of prob-
lems nat urally arising from it, of which it is difficult to say whether their uniquely
uriginal quu.lgtv or their transcendently intense mathematical interest, or their
pere nmq,}}g( important jnstrictiveness for physieal science, is most to be praised.”

Da.r.bo}x, Intreduction, (Eueres de Fourder, 1 (1888), p. v.

“Taw imporiance de ses découvertes, par Finfluence déeisive quil a exercée sur
g veloppement de Ia Physique mathématique, Fourier méritait hommage qui
o3t rendn aujourd’hni & ses travaux et & sa mémoire. Son nom figurera digue-
meni & edtd des noms, illustres entre tous, dont la liste, destindée & g'aceroitrs
avec les années, constitue dés a présent un véritable titre d’hemneur pour notre
pays.  La Théorie analytique de lo Chalewr .. ., que T'on peut placer sans injustice
& cOté des éerits scientifiques les plus parfails de tous les temps, se recommande
par une exposition intéressante et originale des principes fondamentaux; il éclaire
de [a lumiére la plus vive et la plus pénétrante toutes les idées essentielles que nous
devons & Fourier et sur lesquelles doit reposer désormais la Philosophie naturelie;
muaiz il contient, nous devons le reconnaitre, beauncoup de négligences, dea erreurs
de caleul ot de détail que Fourier a su éviter dans d'autres écrits.”

DPoincaré, Théorie analytique de ln propagation de la Chalewr (1801), p. 1, § L.

“La théorie de fa chalenr de Fourier est un des premicrs exemples de Uappli-
cation de I'analyso & la phyaique; en partant d’hypothéses simples qui ne sont
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The next writer upon the Theory of Heat was Poisson. He
employed an altogether different method in his discussion of the
question of the reptesentation of an arbitrary function by a
trigonometrical serfes in his papers from 1820 onwards, which
are practically contained in his books, T'raité de Mécanigue (2° éd.,
1833) and Théorie mathématique de lo Chalewr (1835). He began
with the equation

gy @ )
1-2h cols (h’_}) +h2:1+22‘ k" cos (@' - 2), O\
k being numerically less than unity, and he obtained, by gnte-
gration, ;.‘
[ - O

- 1 -2k eos {z' — 2) + A ,mz\'\'
:J.W Jada’ +2_$w“ h"JW fizh cos ng’ - zjd’.

While it is true that by procecdmg to thc\hmlt we may deduce
that at a point of continuty or ordmary discontinuity

Feyrsees %sb%aéfﬁfé‘ﬂ 0]

18 equal to

lima [él—j Fl')da += Zﬁﬂj F(") cos nia —:r)dr]

h—1

we are not entitled ¢ stert that this holds for the value A=1,
unless we have already proved that the series converges for this
value. Thisis thé’séal difficulty in the theory of Fourier’s Sertes,

and this ]imjta,tion on Poisson’s discussion has been lost sight of in
—

anlre chose*%\w des faits expérimentaux généralizés, Fourier en a déduit une
strie de coﬁscquenues dont I'ensemble constitue une théorie compléte et cohérente,
Les rf-s(lltats quil & obtenus sont certes intéressants par eux-mémes, mais ce qui
l'gst, plis encore est s méthode qu'il & employée pour ¥ parvenir et qui servirs
b deurs de modéle & tous ceux qui voudrent cultiver une branche queleonque de
la physigue mathématique. JFajouterai que le livre de Fourior a une importance
capitale dans Vhistoire des mathématiques et que I'analyse pure Il doit peut-étre
pluz encore que Vanalyze appliguée.’”

Boussinesq, Théorie analytique de o Chaleur, 1 (1901, 4

“Les admirables applications au'il fit de cette méthode {{.e. his method of inte.
grating the eqnations of Conduction of Heat) sont, & la fois, sssez simples et nssez
pépérales, pour avuir servi de modéle aux géoméires de la premitre moiti¢ de ce
siéele; et clles lear ont été d’antant plus wtiles, gu'elles ont pu, avec de légéres
modifications fout au plus, étre transportées dans d’autres branches de la

Physique mathématique, notamment dans I'Hydredynsmique et dans la Théorie
de I'tlasticité.”
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somc presentations of Fourier’s Series. There are, however, other
direetions in which Poisson’s method has led to most notable
results. The importance of his work cannot be exaggerated.*

After Poisson, Cauchy attacked the subjeet in different memoirs
published from 1826 onwards using his method of residues, but
his treatment did not attract so much attention as that given
about the same time by Dirichlet, to which we now turn.

Dirichlet’s investigation is contained in two memoirs which
appeared in 18291 and 1837.% The method which he employed
we have already referred to in speaking of Fourier's werk:~ He
hased his proof upon a careful discussion of the limifiig values
of the integralg A\ 3

¥

e 2 ~
[ fx) %—‘:‘E’" B ..., @ > 0,000
J 4

/] 1 \
[ 7 SR gy >0,
-4 \“

L ¢

sin x

as g increases indefinitely. By this\means he showed that the
sum of the Fourier’s Seriesvfor Abraghbrinydnzifiz — 0)) at every
point between — = and , and Q07 (— = +0) +f (7 —0)) at 2= L,
provided that f{z) has onlypa finite number of ordinary discon-
tinuities and turning point-é’,'a-nd that it does not become infinite
in (-, m). In a latef baper,§ in which he discussed the expan-
gion in Spherical K«{frﬂtonics, he showed that the restriction that

J(#) must remgit finite is not necessary, provided that [ flaydx
converges absoldtely. o
O SECOND PER{OD [I1850-1605]
'l.‘heéﬁﬁcip&l names in the First Period are those of Fouriér and
Di;i(ﬂ}lct, and the position as left by Dirichlet was that, when the
L Jinction () is bounded in the interval {— 7, =), and this interval
\\ gan be broken up info a finite number of partial intervals in each
of which f{x) is monotonic, the Fourier's Series converges at every
point within the interval to }[ f(z +0) +f(z- 0)], and at the end-
pointsto 7 f{ — = +0) +f (7 -- 0})]. These sufficient conditions--and

tlor 5 full trestment of Poisson’s method, tfercnee may be made to Bocher’s
paper, “Lutroduction to the Theory of Fourier's Serias,” Ann. of Math. {2}, T (1306).

Tl ournal fir Math,, 4 (1820).

IDove’s Reperforivm der Physik, 1 (1837), 152,

§Sournal fir Math,, 17 (1837).
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their extension to the unbounded function--cover most of the
cases that are likely to be required in the applications of Fourler's
Series to the solution of the differential equations of mathematical
physics.

Tn the Sccond Period we pass more definitely into the domain of
the pure mathematician, and the first name we meet is that of
Riemann, His memoir* Ober die Darstellbarkeit einer Fienction
durch eine t?‘-z'g,ro:uome{risu’m Rethe formed his Habilitationssclrilt bt
Gottingen in 1854, but it was not published till 1867, aften‘his
death, Tt led to most important developments in mathepabicdl
analysis, ag well as to the discovery of many striking prQl:mhu of
trigonometrical scries, in general, and of Fourier's “\m'w 1 par-
ticular. 1l abm was to find a necessary and quf"ﬁﬂent condltm 1
which the arhitrary [unction must satisfy so thafyaa point « in the
interval, the corresponding Fourier’s Scries Ex;h%«ll‘ converge to f(z).
Divichlet had shown that cerfain conditjons Were su(ficient. The
question Ricniann set himself to answelhas not vet been solved.
It is quite probable J‘h%}‘\}b‘aﬂﬁu‘l%}é@%rgﬁut 11 the consideration
of the problem he realised that thekoncept of the definite infegral
should be widened. And the meann Integral we owe to the
study of Fourier's Series. 4

Cauehy in 1823+ had dt,igmd the definite integral of & continuous
function as the limit 6@ sum, much in the way it is still treated
in elementary text-beoks. He divided the interval of integration
into partial interw@ls by the points

\ =y, @ i ty_y, &, =D,

The sum\& Was given by the equation

S (G’I %y f(‘rl) +(a2_a )j( 2) +e ~.‘~({5”—-ﬂn_1)f($“),
where i, is any point in (@,_y, a al
NHe showed that, when the number of points of seetion tends to
infinity and the length of the largest partial interval tends to zero,

b
the sums § tend to a limit. The definite wutegral j f(xdz he
defined to be this limit. “

If the function is continnous in («, b} except at the point ¢, in

*Hee note on p. 6.

TCE. Cauchy, Résumd des legons données « DEcole roy. Polytechnique sur le caloul
tnfinitésimal, 1 (Paris, 1823), pp. B1-84, and Euwres (2), 4, p. 122-20.
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the neighbourhood of which it may be bounded or not, the integral
Is taken to be the sum of the limits
lim I fayiz and lim r F(@)a,
=t da eth
when these limits exist. And if f{ -J:) is discontinuous at a finite
number of points ¢, ¢y, ... ¢, the interval is divided into parts
each of which containg only one of these points. To cach of these
parts the preceding definition is applied, when this is possible; fad
then the sum of the numbers so obtained is taken as the m‘ngral
from a to b PN
In dealing with the bounded function, Riemann did, iot assume
that it was continuous in the interval, or had onlvﬂﬁnite number
of discontinuities therein. But he used the sum\S as before, and

the integral J. F{z)dz was defined as the hmlt of these sums S,

provided this limit existed. He obtained a\necesscu”} and sufficient
condition for the existence of the ]mnt and placed the definite

integral on a wider and p%@g@m%{% kg}&gﬁh
With Riemann’s definition of the integral f (x)dx, for a bounded

function-given in the textin a slightly I]’lOdlflLd form- functions
that were previously without an integral became integrable. A
striking example® d{ie to him was the sum of the series,
Qo) , ()
22 32
where (n) s‘rands for the positive or negative difference between nz
and the-nédrest integer, unless it lies midway between two consecu-
tive Iibegf’l‘b when (nx) is to be taken as zero. This function is
dmcontmuous for cvery rational number of the form p/2x, where p
-~ {8)an odd number, prime to #; and there are an infinite number
\ Jot points of discontinuity in every interval, however small.
‘A fundamental theorem prmed by Riemann deals with the

N

{x} + +ey

]

Fourier’s Constants ]j J{x) cosmdx He showed that for any

bounded and integrable function f(z) these constants tend to zero
as n tends to infinity. And this holds also for the integral

B gin
L F(2) oos % €

*Cf, loc. cif. § 6.
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This theorem shows at onee that, if f(2) is bounded and integ-
rable in { —#, =), the convergence of its Fourier’s Series at a point
in (- =, =) depends only on the behaviour of f{z} in the neighbous-
hood of that point.

Riemann was also led to examine the theory of trigonometrical
series of the type

a4y +{a; cos & +b, sin x) +{a, cos 2x +by sin 2i) + ...,
when the coefficients are not Fourier’s Constants. He obtained
many of the properties of such serics.  The most important qpa\z’é’«:ig}n
te be answered was whether a funetion could be represented by
more than one such series in an interval { —, 7). Thisireduces
to the question whether the sum of a trigonomgj(i&zﬂ series in
which the coefficients do not all vanish can be gero'right through
the interval. The discussion of this and simtar problems was
carried on, chiefly by Heine and G. Cant ‘,;}rom 1870 onwards;
in these papers Cantor laid the foundabion of the Theory of
Sets of Points, another example of Whe remarkable influence
the theory of F ourieniwﬁghﬁ@ﬁul{bséﬁ?m&"&iﬁbn the development
of mathematics. It will be suﬁiciié.'nt in this place to state that
Cantor showed in 1872 that sl the coefficients of the trigono-
metrical series must vanighy 'if its sum is zero at all points of
{— =, =), with the exc \}@oﬁ of the points of a set of the nth order.*

In 1875 P. du BoLs’—SReymond provedf that if 2 trigonometrical
serics converges U< w, w) to f(x), where f(x) is integrable, the
series must be rb}l% Fourier’s Series {or f{z). He alse settled the
question as o whether the Fourier’s Series for a continuous function
always h\a\%f{fr) for its sum; for he gave not only an example of a
functiom, “continnous In {—r, 7), whose Fourier's Series did not
c-q;gvéfge at a particular point, but he also constructed another,
".\khc}éé Fourier’s Series fails fo converge at the points of an every-
where dense set. Many years later Fejér gave several much
simpler examples.t

The nature of the convergence of Fourier's Series received
attention, especially after the introduction by Stokes {1847) and

* Math. Annalen, 5 {1872}, 123,
+Abh. d. Bay. Aked., 12 (18753, p. 117,

1CL. Journal fir Math., 137 (1909); 138 (1910), 22.  Rend. Circ. Matl. Palermo,
28 (1909), 402.
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Seidel (1848) of the concept of uniform convergence, It had been
known since Dirichlet’s time that the series were, in general, only
conditionally convergent, if at all; and that their convergence
depended upon the presence of positive and negative terms. It
was not till 1870 that Heine showed* that if f(x) is- bounded
and integrable, and otherwise satisfies Dirichlet’s Conditions in
(=, w), its Fourier’s Series converges uniformly in any interwal
(e, &), which contains neither inside it nor at an end any diseon-
tinuity of the function. \)
The importance attached to the question of uniform ednyergence
of the series was due to the impression that term bygterin integra-
tion would only be permissible, if the series conv,egged uniformly.
1t was not till much Iater that it was found theta & Fourier’s Series
could be integrated term by term, even if fha\serics ifself did not
converge, K7, .
The sufficient conditions of Dirichlet, were succeeded by three
conditions, now classical, associatéd) with the names of Dini,
Lipschitz and JFordan. Dm@@gh}%ﬂb@p el that the Fourter's
Series for the integrable funcf,zbn (@) has hm Jf (@ +h} +flx-R)}

for is sum at any point i (> o, ) for wkwk this Limat extsts, pro-
vided that there is a ;pos’aéa{ve & such that

rf(x -4-\&+f(x c)-—hm [ flz+h) +flz~ B}
2 A

o »
is @ convergentvntegral.

A speciglycase of Dini's criterion had been given in 1864 by
Lipse \Qz“}_ This can be put in the form:

.’{’f;{? ourier’s Series for f(®) converges at x to

) ﬁliu::] L f(@+h) +fle-B),

\ W

when this Vimit exists, 1f there is a positive § such that
| f@+8) +f (e - ) ~ lim [f(z +B) +f(o - <CE,

when 0<it=4d,
where ' and k are positive numbers.

*Journal fir Math., T1 (1870), 353.

tCE. Dini, “Serie di Fourier e sltre rappresentazion] analitiche delle funzioni di
una variabile reale” (Pisa, 1880}, p. 102.

1CE. Journal fiir Math., 63 (1864), 296,
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The treatment of Fourier's Series was simplified by Jordan*
by the introduction of his functions of bounded variation and his
eriterion states thati the Fourier’s Series for the infegrable function
J{x) converges to

3 f(z+0) +flz-0)]
at every point in the nmeighbourhood of which flz) is of bounded
variation,

During this period the properties of Fourier's Constants weréd
also examined, and among the important results obtained, wheh
the Riemann integral was still used, it is sufficient to c.it-’e:\th:-.tt
usually called Parseval’s Theorem.t according to which, when

flx) and [ f(x)]? are integrable in (- w, 7}, Y,
:r.[” [ f(z)Pde=2az? +§T‘}(a,ﬁ LY

N
Also, if f(x) and g(x), as well as their sq{l.a'\r:ea\, are integrable,

;j “f(m)g(m) dr=2a.a, +’Z;:(a’.nan +6, 85,
where a,, b,, and an,“ﬁﬁ‘ﬁlg 1:5 Ue}ll’}{g:i%(i?:;’%‘%onstants for f(z) and
g{x) respectively. \

If Fourier’s Series for f(x)is not convergent, it may converge
when one or other of thevmethods of “summation” applied to
divergent series is adopted.” Fejér in 1904 discovered the remark-
able theorem} that, (when the series is summed by the method of
arithmetical meansits sum is 3| /(z +0) +f(z ~ 0)] at every point
in (-, =} at which f(24-0) exist, the only condition attached to
f{z) being t&é},‘ if bounded, it shall be integrable in { - =, w), and,

: O\ "
if unbounded, tha-tJ- f(#)dz shall be absolutely convergent.

N

NS
NS

\ ) THIRD PERIOD [1905— 1

The theory of Fourier’s Series, as built up by Dirichlet, Riemann,
Cantor, Dini, Jordan and other mathematicians of the nipeteenth
century, with a fuller understanding of the limiting processes

*CE. Comptes Rendus, 92 (1881), 228, and Jordan, Cours d’Analyse, 2 (1% éd., 1382),
Ch. V.

tCE. de Ia Vallée Poussin, dAnn, Soe. se. Brucw., 17B (1893), 18, srd Hurwitz,
Math. Annalen, 57 (1903), 175.

${CL. Math. Annalen, 58 (1504), 51.
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involved, placed in the hands of applied mathematicians a quite
satisfactory instrument. But the properties of the series, which
we owe to them, failed in many ways to give a theory with which
the pure mathematician could be fully content. Unity, symmetry
and completeness were still wanting, In this respect the last
twenty-five years have seen a great improvement, due, chiefly, to
the new definition of the definite integral put forward in 1902 by,
Lebesgue in his Paris thesis—Intégrale, longueur, aire*—and further
developed in his Legons sur Pintégration et ly recherche des forltians
primutrves {(1904).7 "
Lebesgue’s integral is founded upon the subtle and raj;her difficalt
idea of the measure of a set of points. In the mpdern theory of
fanctions of a real variable, Lebesgue’s integral (orone of the others
associated with it) is indispensable. But for\practical purposes
the Riemann integral will suffice. The p@iess which we now
describe lies in the field of the specialist \and in no department of
pure mathematics has greater activity been displayed in recent
vears than in the theory of trgﬁaonoingtncal serics.t  Most im-
portant contributions have\’()eeu macle ram}:?é's%ue hlmself Fejér,
Hohbgon, Hardy and L:lttlewood de Ia Vallée Poussin and W. H.
Young.

The first point to notic‘s is that, if f{x) iz bounded and infegrable
according to Rie A’s definition, it is also integrable with
liebesgue’s definition, and the integrals are equal. But a bounded
function maysbe’integrable with Lebesgue’s definition, and fail to
be ihtegrable{w'»ith Riemanr’s. It is convenient to say thai a
function_d#'integrable (L), when it Is integrable according to
L(’bCSblrl\S definition, and that it is integrable (R), when it is
1utegmble according to Riemann’s definition. 1f f{z)is integrable

S, Jbut not bounded in the interval of integration, the Lebesgue
uttegral converges absolutely. Unbounded functions may be
integrable (L), but not integrable (R); and conversely.

The fundamental theorems of integration apply to both integrals,
but one of the advantages for our present purpose of the Lebesgue
integral is that a function integrable {L) need not be centinuous

*Annali di Mal, (3), T (1502), 231.
TA revised and enlarged second cdition has appeared in 1928,

£ A full account of work in this ficld is to be found in Hobson's Theory of Functions
of u Real Variable, 2 {2nd ed., 1926), Ch, VIIL,
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“almost evérywhere* in the interval of integration, as is the case
with a function integrable (R).T Alseif £, («) Is integrable {£), and
lim f,(x} exists, finite or infinite, this limit is integrable (). And

R
more important still, with Lebesgue integrals, under much more
general conditions,I we can make use of the relation:

If f(a)=lim f.(x), then rf(x) dr= Tim j.bf._.l(.’f)(g:r-.

[ X i
Returning to Fourier’s Series, we remark first that Riemghn’s
theorem, according to which the Fourier’s Constants of a bofigtied
and integrable innction f(z) tend to zero when » tends to }llﬁmfy——

or, more generally, that 11mJ. Jix) S OI; nt dr=0—a p"h«es with the

H—I0

Lebesgue 1ntegrab1e to any function, bounded\er ﬂot infegrable
(L. This is now usually referred to as the\me&nn -Lebesgue
Theorem—or Fundamental JTemma— an({ may be stated as
follaws: \V

If f{z) is integrable (L) in (a, b), then
wwwidbraulj B}lary org.in

lim f Lnr dz=0,

H—
This was proved by Lebescrue m 190&6
Now the sum s,{z) of ths\terms up to those in cos na and sin nx
of the Fourier's Sene\er #(x) integrable {L} can be written

lj 94 sin ( 2n +1)a

]

and we find erm this that
A, @) ~f @)= L i 77 g BLER D2y,
0

T op-rw A4
where Pla)=Ff(z +2a) +f( - 2a) — 2f (=)
mHence, by the Riemann-Lebesgne Theorem,

A
hm sﬁ(a") =£( :t:), if hmj. P{er) sin (2n +1)o da
1]

pIES o

il

for some pomtlve k.

. *A property is said to hold almost everywhere in an interval, if it holds for all
points except those forming a set of measure zero.

$Ci. Appendix IL, § 10,
18ee Appendix IT, §§ 15, 18.
§4nnales Sci. de I' Ecole Normale (3}, 20 (1903), 453.

L. Also see Lebesgue, Lecons
sur les séries trigonoméfriques (Paris, 1906), 6].
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Also the question of the convergence of the Fourier's Series for
fiz) at a point in the interval (~w, =) depends only on the
behaviour of f(z) in the neighbourhood of that point.

In 1903 Lebesgue gave a new sufficient condition for the conver-
gence of the Fourier's Series for f(z), which included all the
previously known conditions*

Another point to notice is that the question of term by term
integration of Fourier'’s Series does not depend, as used to'be™
thought to be the case, on the uniform convergence of the ae’r{es
Indeed, with the usual notatlon, we have? 2N\

L W

‘[ fxyde=ay(x+=) +z (@, 8in ne +-b, (cos ny <eos nz)),

where 2 is any point in (-, =), for any functmn\mtegrable (L),
whether the Fourier's Series converges or hot™ And the new

* & O‘ .
series converges uniformly to J. fla)de Q‘Qﬁle inferval (— =, 7).

Term by term integration can then hagentinued indefinitely,
This result can be nsed as a test in det”ermmmg whether a trigono-
motrical series is a Fourier¥ d’t%ﬁ“i’ib‘&ﬁfiﬁ%ggratmg the series
term by term, it fails to con\rerge in the range { —w, ), 1t cannot
bie a Fourier's Series. }Q this way it can be scen that NZ_!’ 511:;;
iz not a Fourier's 8 BS, as the integrated series diverges at x=0.1
Again Parseval’®\Theorem, that
\"}J [F@Ple=20t + 3
holds f :}{1} function f{z), whose squarc is mfpgrable (L) m
(-, -n-)\ and a similar remark applies to the relation

e e 2aoao+2 (@t 40,

s

Where a,, b, and ,, f, are the Fourier's Constants for the functions
Ff(z) and g(x), whose squares are integrable (L) in (-, 7).§

«(f. Math. Annalen, 61 (1905}, 82, and Lebesgno, Legons sur les séries trigonometris
queg, oo 39,

$Cf. Lebesgue, Lepans sur les séries trigonomélrigues, p. 102.

:This example is due to Fatou, Comples Rendus, 142 (1906), p. 765, Other
examples are given by Perron, Math. Annalen, 87 (1922), 84.

$Cf. Lebesgue, Legons sur les séries trigonométrigues, p. 100,

Fatou, Acia Math., 30 (1908), 352,

C.I B
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As g{z} can be put équal to zero in the partial intervals (- =, a)
and (8, =), it follows that when f(x) and g{z) are functions whose
squares are integrable (L) in { -, =) and (o, ) respeetively, the

8
ttegral '- Finyglx)dx may be obtained by substituting for f{x) its

Yourier's Series and applying term by term integration.

But one of the most remarkable results which follow from the
use of the Lehesgue infegral in the theory of Fourier’s Series is thé
converse of Parseval’s Theorem, known from its discm't,rt,l.s \gs
the Ricaz-Fischer Theorem :* 2N\

L W

Any trigonometrical series for which "> (0, 24+b 2) (:drfverges 18

the Fourier's Series of a function whose qquare ig m‘t@rmbie (F) in
{—7. 7).

Reference has already been made to the application of snmma-
tion by Fejér's arithmetical means to, #béarier's Series. This
method is a special ease (€, 1) of the gageral Cesiro sum, usually
denoted by ((, 7). A great dca,l of Witk has been done in the
investigation of suf e HE RIS OERdE Fourier's Series e
summable (C, r) at a point m{} %, m}. The results obtained by
this method, “hen 18 fractlonal have thrown light on ordinary
convergenee and Cesiro mimmdtwn when 7 1s integral.

Another field 1in v wh much progress has been made is the
investigation of thebghaviour and properties of Fourier's Constants
when Lebeugue Gntégrals are used. The Parseval and Ricsz-
Fischer The ems belong to this class, and extensions ol both

ave been made- when the condition that f{x) and g{x) shall be
hmctnonj‘§ﬂ'm% squares are integrable (L) 1s replacpd by & more
generdh Jeondition.

P sThﬂ convergence problern for Fourier's Serics is still unsolved.
Ehere is no property of the arbitrary function f{z), integrable (I}
in (-, #), which is known to be both necessary and sufficient for
the convergence of Fourier's Series. There are simple sufficient
conditions, which are known not to be necessary, and the necessary
conditions obtained are known not to be sufficient ; and the same
remark applies to summation by an assigned Cesiro mean.

*(f, F. Riesz, Comptes Rendua, 144 (19073, 615-610, 734734,
Fischer, Comptes Rendus, 144 (1907}, 1022,
Young, W. H. and Grace Chisholm, Quarterly J. of Math., 44 (1913), 49,
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CHAPTER T R\

RATIONAL AND IRRATIONAL NUMBERZS
THE SYSTEM OF REAL NUMBERS®

1. Rational Numbers. The question of the' convergence of
Infinite Series is only capable of s&tlsfa@bry treatment when
the difficuliies underlying the conceptw‘n of irrational numbers
have been overcome. For this reason we shall first of all give a
short discussion of that S“h@j’eé}ﬁ“bml yiorg.in

The 1des. of number is fqrmed by a series of generalisa-
tions. We begin with the posmve integers. The operations
of addition and multiplidetion upon these numbers are always
possible; but i e a% b are two positive integers, we cannot
determine positiveninbegers & and y, so that the equations
g=b+z and a= by -are satisfied, wnless, in the first case, o is
greater than & and, in the second case, & is a multiple of &.
To overcome, this difficulty fractional and negative numbers are
mtroduce&,\ ‘and the system of rational nwmbers placed at our
dlsposal ~

The system of rational numbers is ordered, .. if we have two
&@erent numbers ¢ and b of this system, one of them is greater
than the other. Also, if b and b>>¢, then a>>¢, when a, b
and e are numbers of the system. .

Further, if two different rational numbers ¢ and b are given,
we can always find another rational mumber greater than the

*The reader who wishes an exiended treatment of the systemr of rational
numbers is reforred to Stolz und Gmeiner, Theorctische Arithmeiik (Leipzig,
1900-1902) and Pringsheim, Vorlesungen dber Zohklen- wnd Funklionenlehre
(Leipeig, 1916).

20



1-3] RATIONAL AND IRRATIONAL NUMEERS 21

onc and less than the other. It follows from this that between
any two different rational numbers there are an infinite number
of rational numbers. *

2, The introduction of fractional and negative rational num-
bers may be justified from two points of view. The fractional
numbers are necessary for the representation of the subdivision
of a unit magnitude into several equal parts, and the negative
numbers form a valuable instrument for the measuremefit, ‘of
magnitudes which may be counted in opposite directioms,s This
may be taken as the argument of the applied ma’t&’l"eﬁiatician.
On the other hand there is the argument of thespure mathe-
matician, with whom the notion of number, posij;ii;e”and negative,
integral and fractional, rests upon a fourdadion independent
of measurable magnitude, and in whose\gyes analysis is a
scheme which deals with numbers only,“and has no concern
per se with measurable quantity. Itaawpossible to found mathe-
matical analysis upon the notion\of”positive integral number,
Thereafter the successive d@’ﬁ'ﬁ‘f’tﬂﬂf‘saﬂii BEY¥i868dRt kinds of num-
ber, of equality and inequalitf, 8mong these numbers, and of the
four fundamental operabions‘,' ay be presented abstractly.f

3. Irrational Numbpg‘s,\ The extension of the idea of number
frorn the rational tocthe irrational is as natural, if not as easy, as
is that from the(pesitive integers to the fractional and negative
rational numbes!

Let @ andbbe any two positive integers. The equation z=a
cannot l{e;’sélved in terms of positive integers unless a is a perfeet
5" poxeer. To make the solution possible in general the irrational
ng;cgl.bérs are introduced. But it will be seen below that the

N

*When we say that a set of things has a finite number of members, wo mean
that there iz a positive integer n, such fhat the total number of members of the
set is less than a.

Wkhen we say that it has an infinite number of members, we mean that it has
not & finite number. In other words, bowever large » may be, there are more
members of the set than n.

A set is said to be countably infinife (or enumerable) when its members can be
represented by o sequence 4y, %g R .ov . )

In this case there is a one-one correspondence between the members of the set
and the seb of positive integers 1, 2, 3, ... .

fCf. Hobson, Prec. Dondor 3fath, See. (13, 35 {1913), 126 ; also the same author’s
Theory of Functions of ¢ Real Variable, 1 (3rd. ed., 182T), 11.
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system of irrational numbers is not confined te numbers which
arise as the roots of algebraical cquations whose coeflicients
are integers.

8o much for the desirability of the extension from the abstract
side. Trom the concrete the need for the extension is also evident.
We have only to consider the meuasurement of any quantity to
which the property of unlimited divisibility is assigned, eg. a
straight line L produced indeflnitely. Take any segment of thls
linc as unit of length, a definite point of the line as origlador
zero point, and the directions of right and left for the @dditive
and negative senses. To every rational number copresponds a

&
M > >
ris. 1, \:
definite point on the line, If the number\q an integer, the point
18 obtained by taking the required nurhber of unit segments one
after the other in the ﬁmﬁﬁr (ljr%ctlan. If it is a fraction —p/q,

Tk

it is obtained by dividing the ymit ?rﬁength into ¢ equal parts
and taking p of these to the :cljght or left according as the sign is
positive or negative. Thefe numbers are called the measures of
the corresponding seggqeﬁta and the gegments are said to he
commensurable with $he. Unit of length. The points correspond-
ing te rational numbers may be called rational points,

There are, hawe?:'er, an nfinite nuwmber of points on the line
L which are/mdt rational poinis. Although we may approach
them as\Medrly as we please by choosing more and more
rational{points on the line, we can never quite reach them in
this, .Q-':a'j'. The simplest example is the case of the points coin-
%idmg with one end of the diagonal of a square, the sides of which

¢ the unit of length, when the diagonal lies along the line L
and its other end coincides with any rational point.

Thus, withont considering any other case of incommensur-
ability, we see that the line L is infinitely richer in points than
the system of rational numbers in numbers,

Hence it is clear that if we desire to follow arithmetically all
the properties of the straight line, the rationsl numbers are
insufficient, and it will be necessary to extend this system by the
creation of other numbers.
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4. Returning to the point of view of the pure mathematician,
we shall now describe Dedekind’s method of introducing the
irrational number, in its most general form, into analysis.*

Let us suppose that by some method or other we have divided
all the rational numbers into two classes, a lower class A and an
upper class B, such that cvery number « of the lower class is less
than every number § of the upper class. ~

When this division has been made, if a number « belongs te
the class A, every number less than a does so also; and’uf
a number 5 belongs to the class B, every number greater\than B
does 80 also, N

Three different cagses can arise : \\

(I} The lower class can have a greatest nunborJand the upper

class no smallest number, )

This would oceur, if, for example, we fdh: the number 5 and
every number less than 5 in the lowerytlads, and if we put in the
upper class all the numbers greater thzm 5.

(I1y The upper cluss can ‘?z‘df@‘é%“.ﬂ%ﬁéé@ﬂ' VN and the lower

class no greatest numbeho>

This would cccur if, for, ek’afﬂple, we put the number 5 and
all the numbers greater th&n5 in the upper class, while in the lower
class we put all the u,Qﬁbérs less than 5.

It 1s impossible.]:;\hat the lower class can have a greatest
number s, andsthé upper class a smallest number =, in the
same divisio Iclf}the rational numbers; for between the rational
numbers sgnd n there are rational numbers, so thas our hypo-
thests t\}@’t“{ahe two classes contain all the rational nurobers is
contraa,icted

.«But a third case can arise :

4 (II1) The lower class can have no greatest number and the upper
class no smallest number.

For example, let us arrange the positive integers and therr
squares in two tows, so that the squares are underneath the
numbers to which they correspond. Bince the square of a frac-
tion in its lowest terms is a fraction whose numerator and

*Dedekind  {1831-i916) published his thevry in Sietégkeit wmd irrotionale
Zaklen (Braunschweig, 1872); English translation in Dedekind’s £ssays on Number
{Chicago, 1901).
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denominator are perfect squares,* we see that there are not rational
numbers whose squares are 2, 3, 5, 6, 7, 8, 10,11, ...,
1 2 3 ’ 4 ...
12345678910 11121314 1516....

However there are rational numbers whose squares are as hear
these numbers as we please. For instance, the numbers

2, 1:5, 1-42, 1415, 1-4143, ...,

1, 1-4, 141, 1-414, 1-4142, ..., \

£ )
7 AN

form an upper and a lower set in which the squares of the-terms
in the lower are less than 2, and the squares of the tm:m‘:'in the
upper are greater than 2. We can find a number jn, \tht upper
set and a number in the lower set such that thcm squares differ
from 2 hy as little as we please.}

Now form a lower class, as described akowe, containing all
negative rational numbers, zero and all\fhe positive rational
numbers whose squares are less tham\2; and an upper class
containing all the positive rational numbers whose squares atre
greater than 2. Th@ﬁ”é‘v‘éﬂraﬁ'ﬁg Gifitfer belongs to one class
or the cther. Also every nur:gber in the lower class is less than
every number in the uppen, The lower class has no greatest
number and the upper class has no smallest number.

5. When by any mbﬂ\ns we have obtained a division of all the
rational numbers mto two classes of this kind, the lower class
having no greatést number and the upper class no smallest
number, we Greate a new number defined by this division. We
call it an\wﬂatwml number, and we say that it is greater than
all the fatwnal numbers of its lower class, and less than all the
ratwnal ‘numbers of its upper class.

{Qieh divisions are usually called sections.? The irrational
number V2 is defined by the section of the rational numbers
described above. Similar sections would define the irrational
numbers %3, U5, ete. The system of irrational numbers is
given by all the possible divisions of the rational numbers into a
lower class A and an upper clags B, such that every rational

*If a formal proof of this statersent is needed, see Dedekind, loc. cit., English
translation, p. 14, or Hardy, Course of Pure Mathematics (5th ed., 1928}, 0.
t+Cf. Hardy, Ioe. sit., p. 8,

{French, coupure; German, ScAnits,
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number is in one class or the other, the numbers of the lower
class being less than the numbers of the npper class, while the
lower class has no greatest number, and the upper class no smallest
number,

In other words, every irrational number is defined by its see-
tion (A, B). It may be said fo “correspond” to this section.

The system of rational numbers and irrationsl numbefs
together make up the system of real numbers. \

4 '\ \Q
The rational numbers themselves “correspond” to divisions of ‘rational
numbers, g ™

TFor instance, take the rational number m. In the lower dlass A put all
the rational numbers less than m, and  itself, Tn the uppeelass B put all
the rational numbers groater than m. Then m corresponds to this division
of the rational numbers.

Lxtending the meaning of the term section, as usdd Above in the definition
of the irrational qumber, to divisions in Whlch\:e lower and upper classes
have greatest or smallest numbers, we may gey that the rational number m
corresponds to a rational section (A, B)* arrd that the irrational numbers
correspond to irreitonal secfions. When the rational and irrational numbers
ace defined in this way, and togBthaf: ‘ﬁi‘rﬁ”ﬂﬁ@r@s&ﬁfﬁf’}e&l numbers, the
rezl number which corresponds to, L'hs' rational number m (to save confusion
it is sometimes called the ratiopal® veal number} is conceptually distinct from
m. However, the relations &f magnitude, and the fundamental operations
for the reg] numbers, are defined in such a way that this rational-real number
has no properties dlstl}x@\fmm those of m, and it is nusually denoted by the
same symbol.

6. Relations of}Magnitude for Real Numbers, We have extended our
conception of alitaber. We must now arrange the system of real numbers
in order; ife.YWe must say when two numbera are equal or unequal to, greater
or less than, each other.

In t}}ia place we need only deal with cases where at least one of the numbers
19 dtnational,

\A_rl irrational number iz never egual to & rational number. They are always
difforent or unegqual,

Next, in § 5, we bave seen that the irrational numher given by tho section
(A, B) iz said to be greater than the rafional number m, when w is & member
of the lower class A, and that the rational number m i3 said to be greater than
tho irrational number given by the section {A, B), when = is a member of the
upper clags B.

*The rational number # could correspond to two sections: the one named in
the text, and that in which the lower class A contains all the rational numbers
less than m, and the upper class B, m and all the rational numbers greater than .
To save ambiguity, one of these sections culy must be chosen.
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Tweo irrational numbers are egual, when they arc both given by the samesection.
They ave different or unegual, when they are given hy different sections.

The drrationsl number o given by the section (A, B) is greater than the
irrational number o’ -given by the section (A°, B’), when the olass A contains
numbers of the class 13, Now the ¢lags A has no greatest nuamber. But if
a certain number of the class A belongs to the class 1B, all the numbers of A
greater than this number also belong to 3. The class A thus contains an
infinite number of members of the class 13, when a =o',

If a real number « is greater than another real number o, then o is less than &

Tt will be observed that the notation =, =, < Is used in dealing wlt}y 1’&3,1
pumliers as in dealing with rational numbers 2N\

The real number § iz sald to e bGefieen the real numbers o aml »7 when
onc of them is greater than [ and the other lesa, N

With these definitions the sysiem of real numbers i= urcﬁx’p(r{ » I we have
two different real numbers, one of them i3 grealer than e o her; and if we
have three real numbers sueh that e = Jand § = 4, theaNass 5.

These definitions can be simplified when the ratlx@Q\L numbbrs themaelves
are given by sections, as explained at the end of §§\ &

X
7. Besween any two different rational numbss*there is an infinite number
of rational numbers. A similar property haldsfor the system of real numbers,
as will now he showns www. dbraulibl‘ary'm'g in

{I) Befween any fwo different real m&mbfm a, o there are an infinits number
of rafional numbers.

If 2 and a” are ra.tlonal, the property is known.

If a iz rational and « irgafidnal, let us assame o> «a’. Lot @’ be given by
the section {A7, B). Thég\the rational number « iz a member of the upper
class B/, and B’ has¢fiy lcast number. Therefore an inlinite number of
members of the cla.gs 3B’ are less than a. Tt follows from the definitions
of §5 that there &ré an intinite number of rationsl numbers greater than o
and less thana {,

A simi]alig'mbf applies to the case when the irrational number « is greater
than thegational number a.

There ‘femains the case when ¢ and o are both irrational. Let o be given
b(ysthe section {A, 13) and & by the section (A7, BY). Also let a = o',

Then the class A of ¢ contains an infinite number of members of the class
B’ of @’; and these numbers are less than a and greater than o',

A similar proof applies to the case when a < a’.

The result which has just been proved can be made more general :

(1T} Behocen any two differeat real numbers there are an infinite number of

trrational numbers.

Let g, o’ be the two given numbers, and suppose a < o”,

Take any two rational numbers § and f#, such that o < 8 < § <u’. If we
can show that between § and 5 there must be an irrational number, the
theorem is established.

Let ¢ be an irrational number. If this does not lie between S and 8, by
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adding to it 4 suitable rational number we can make it do so. For we can
find two rationsl numbers m, », such that w2 <{<n and {n — ) is less than
{8 = 8). The number §—m+1 is irrational, and lics between § and 3.

8. Dedekind's Theorem. We shall now prove a very im-
portant property of the system of real* numbers, which will be
s=ed frequently in the pages which follow.

1f the system of real numbers vs divided into two classes 4 and B,

W stieh o way thot O
(i) each dass contains at least one number, O\
(1) every number belongs to one closs or the other, O

(iii) every number ¢n the lower class 4 is less tkan e@ery number
wn the upper class B, >
then there is o number a such that ;g'\
erery nuinber less than a belongs to the lowdslelass 4, and
every number greater than a belongs to the upper class B.

The separating number o itself may Yelong to either class.

(onsider the rational numbers in Aand B.

These form two classes —a g4 dﬁd};ﬁbﬁ&%ﬁhn@]ﬁ{: every rational
number is in one clags or the other and the numbers in the lower
class A" are all less than the murhbers in the upper class B

As we have seen in § 4 three cases, and only three, can arise,

(1} The lower class Al ean have a greatest number m and the wpper

class B m{\mallest number.

The rational ;n‘u:mber m 13 the number o of the theorem. For
it is clear that every real number @ less than # belongs te the
class A, sim;'ie w18 a member of this class.  Also every real number
b, greatétythan m, belongs to the class B. This is evident if & is
atwr&\ gince b then belongs to the class B, and B’ is part of B.
It I} i¥ irrational, we can take a rational numbcr n between m and b,

mThen # belongs to B, and therefore & does so also.

(i) The upper class B’ can have ¢ smallest number m and the

lower class A’ no greatest numnber.

It follows, as above, that the rational number # is the humber
« of our theorem,

(11i) The lower class A" can have no greatest number and the upper

class B' no smallest number.
*It will be observed that the system of rational numbers does not possess this
property,
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Let s be the irrational number defined by this section (A", B').
Every rational number less than m belongs to the class A, and
every rationzl number greater than m belongs to the class B.

We have yet to show that every irrational number less than m
belongs to the class A, and every irrational number greater than
m to the class B.

But this follows at once from §6. For if m' 15 an irrational N
number less than m, we know that there are rational 1umbers
between m and m'. These belong to the class A, and Th.Qlcfore _
m' does so also. \

A similar argument applies to the case when m’ = it o)

In the above discussion the separating numbef & belongs to
the lower class, and is rational, in case (i); it belgnés to the upper
class, and 1g again rational, in case (ii); it wnatlorlql and may
belong to either class, in ease (ii1). \

9, The Linear Continuum. Dedekingd s Axiom. We return now
to the straight line L of § 3, in whieh a definite point O has been
taken as origin and srdofidbtnetibassitorgdhe unit of length.

We have seen how to efideh a correspondence between the
rational numbers and the(rational points” of this line. The

“rational points” are thé\nds of segments obtained by marking

Fria, 2.

off from O en\he line lengths equal to multiples or sub-multiples
of the gﬁt segment, and the numbers are the measures of the
corregpanding segments.

o~ \Le‘b 04 be a segment incommensurable with the unit segment.
“Thé point 4 divides the rational points of the line into two classes,
such that all the points of the lower class are to the left of all the
points of the upper class. The lower class has no last point, and
the upper class no first point.

We then say that 4 is an irrational point of the line, and that
the measare of the segment O4 is the irrational number defined
by this section of the ratioual numbers.

Thus to any point of the line L corresponds a real number,

and to different points of the line correspond different real
numbers.
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There remains the question—To every real number does there
correspond & point of the line ?

For all rational numbers we can answer the question in the
affirmative. When we turn fo the irrational numbers, the question
amounts to this: If all the rational points of the line are divided
o fwoe classes, a lower and an wpper, so that the lower class hat no
last point and the upper closs no first point, is there one, and only
one, point on the line which brings about this separation ? C

The existence of such 2 point on the line cannot be groved.
The assumption that there is one, and only one, for every section
of the rational peints is nothing less than an axiom by means of
which we assign it8 eontinuity to the line. - h

This agsumption is Dedekind’s Axiom of Ceptinuity for the
line. In adopting it we may now say that 30 every point P of
Hie line corresponds o number, rational ’oQilrmm'omZ, the wmeasure
of the segment OP, and that to every realfplomber corresponds a point
F of the lane, such that the measwure GhOP 1s that number.

Tl}e correspondence betw\g%?@;pgi&tsap;_glge‘ 11}[11(? L (‘}fe linear
condinuum) and the system of Teal numbers (tk‘%: arithmetical con-
tinuum) is now perfect. TRe‘points can be taken as the images
of the numbers, and the ntmbers as the signs of the points. In
consequence of this pexfect correspondence, we may, in future, use
the terms numbex and’point in this connection as identical.

10. The Develgpment of the System of Real Numbers, It is
instructive %6 tee how the idea of the system of real numbers,
as we hawe-described it, has grown.® The irrational numbers,
belong@:g‘as they do in modern arithmetical theory to the realm
of afithmetic, arose from the geometrical problems which required
'ﬁ]itéii‘ aid. They appeared first as an expression for the ratios of

\aucommensurable pairs of lines. In this sense the Fifth Book of
"Euclid, in which the general theory of Ratio is developed, and the
Tenth Bool, which deals with Incommensurable Magnitudes, may
be taken as the starting point of the theory. But the irrationalities
which Euclid examines are only definite cases of the ratios of
incommensurable lines, such ag may be obtained with the aid of
ruler and compass; that is to say, they depend on square roots

*(i. Pringsheim, *Irrationzablen u. Konvergenz unendlicher Prozesse,” Enc,
&. math, Wiss., Bd. [, TI. I, p. 49 ef seg. {Leipzig, 1808},
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alone, The idea that the ratio of any two such ineommensurable
lines determined. s definite {irrational) number did vot oceur to
him, nor to any of the mathematicians of that age.

Although there are traces in the writings of at least one of
the mathematicians of the sixteenth century of the idea that
every irrational number, just as much as every rational number,
possesses a determinate and unique place in the ordered sequence,
of numbers, these irrational numbers were still considered tq
arise only from certain cases of evolution, a limitation which)is
partly due to the commanding position of Euchid’s metidds in
Geometry, and partly to the belief that the problem, i ﬁndmxr
the n' rool of an integer, which lies between the ,ut*‘ pwers of
two consecutive integers, was the only problemrwhose solution
could not he obtained in terms of rational numdbers.

The introduction of the methods of Co'm‘bh‘n‘ate Geometry by
Descartes in 1637, and the discovery of ghev[nfinitesimal Caieulus
by Leibnitz and Newton in 1684-7, m4de" mathematicians regard
this question in another Jisht,, g}_g{@ &}:ée,ﬁpphcqb\htv of number
to spatial magmtude 18 a fundardental postulate of Coordinate
Geometry. ‘“The view now plevailed that number and quantity
were the objects of mathent@tical investigation, and that ths\ Two
were so similar as nof" \bo require careful separation. Thus
number was applicgd*te quantity without any hesitation, and,
conversely, where { éxibting numbers were found madequate to
measurement, heW ones were created on the sole ground that
every quant.ty\must have a numerical measure,”*

Tt was, Teserved for the mathematicians of the nineteciith
centugy%\notably Welerstrass, Cantor, Dedekind and Heine-—to
establish the theory on a proper basis. Until their writings

#pypeared, a number was looked upon as an expression for the
réfult of the measurement of a line by another which was
regarded as the unit of length. To every scgment, or, with the
natural modification, {0 every point, of a line corresponded a
definite number, which was either rational or irrational; and by
the term irrational number was meant a number defined by an
infinite set of arithmetical operations {e.g. infinite decimals or
continued fractions). The justification for regarding such an

*Cf. Russell, Principles of Mathematics (1903), Ch. XIX, 417.
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unending sequence of rational numbers as a definite number was
considered to be the fact that this system was obtained as the
equivalent of a given segment by the aid of the same methods of
measurement as those which gave a definite rational number for
other segments. However it does not in any way follow from
this that, conversely, any arbitrarily given arithmetical represen-
tation of this kind can be regarded in the above sense as an
irrational number; that is to say, that we can consider as evident
the existence of a segment which would produce by suitable
meagurement the given arithmetical representation,$ “gantor*
has the eredit of first pointing out that the assumpsion that a
definite segment must correspond to every suCh'jsequence is
neither self-evident nor does it admit of pro ,'\'but invelves an
actnal agiom of Geometry. Almost at the Same time Dedekind
showed that the axiom in question (or mo¥e* exactly one which is
equivalent to it) gave a meaning, whibh we can comprehend,
to that property which, so far wibhont any sufficient definition,
had been spoken of as the %o$t' uiqf |;)f the line.

To make the theory of nunile? ndepentent ¥f any geometrical
axiom and to place it le}x'ﬁ a basis entirely independent of
mensurable magnitude was the ohject of the arithmetical theories
associated with the wartes of Welerstrass, Dedekind and Cantor,
The theory of Dedélind has been followed in the previous pages.
Those of qu&s}rass and Canter, which regard irrational
numbers as,the’limits of convergent sequences, may be deduced
from that witledekind, In all these theories irrational numbers
appcqx:\'@*hew numbers, to cach of which a definite place in the
domalw’ of rational numbers is assigned, and with which we can
Qp,ér&te according to definite rules. The ordinary operations of

/~arithmetic for these numbers are defined in such a way as to be in
\ “agreement with the ordinary operations upon the rational numbers.

They can be used for the representation of definite quantities, and
to them can be ascribed definite quantities, aceording to the axiom
of eontinuity to which we have already referred.

* Math, Annafen, b (18723, 127.
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CHAPTER II .

2\

INFINITE SEQUENCES AND SERIES.

11, Infinite Aggregates. We are accustomed/$o speak of the
positive integral numbers, the prime numbepﬁj;}he integers which
are perfect squares, etc. These are all examples of infinite sets
of numbers or sets which have more thafhdfinite number of terms.
In mathematical language they sze~termed aggregates, and the
theory of such infinite aggregated lotms an important branch of
modern pure mathematics™” ¥ braulibrary org.in

The terms of an aggregate are all different. Their number
may be finife or inﬁnit&f:’o]fh the latter case the aggregates are
usually called infinite.&gregates, buf sometimes we shall refer to
them simply as aggre\gates. After the discussion in the previous
chapter, there wilkbe no confusion if we speak of an aggregate
of points on @\line instead of an aggregate of numbers. The
two notiongdre identical. We associate with each number the
point ofj\&'hich it is the abseissa. [t may happen that, however
far wd go along the line, there are points of the aggregate further
On:~}§tl this case we say that it extends to infinity. An aggregate

is #aid to be bounded on the right, or bounded above, when there is

*Cantor may be taken as the founder of this theory, which the Germans eall
Mengenlehre, In a series of papers published from 1870 onwsrd he showed its
importance in the Theory of Functions of a Real Variable, and especially in
the rigorous disenssion of the conditions for the development of an arbitrary
function in trigonometric series.

Reference may be made to the standard treatise on the subject by W. H, and
Graee Chisholm Young, Theory of Sets of Foints (1306), and to the earlier chapters
of Hobson's Theory of Functions of a Real Variable, Vol. 1, already cited,

The most recent book on the subject, from the advanced point of view, is
Mengenfehre, by Hausdorff (2 Aud,, Berlin, 1527),

33
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no point of it to the right of some fixed point. It is suid to be
bounded on the left, or bounded below, when there 1s no point of it tio
the left of some fixed point. The aggregate of rationul numbers
greater than zero is bounded on the left.  The agaregate of
rational numbers less than zero is bounded ov the right. The
aggregate of real positive numbers less than wwty is bhounded
above and below; in such a case we sitnply sav that it is bounded,
The aggregate of integral numbers is unbounded.

12, The Upper and Lower Bounds of an Aggregate. H ?w}a
an aggregate (FY* is bounded on the right, there 1s a wimber 1Z~ abhich

possesses the follmmng properties: N
no nwmber of (E) is greater than M; "‘"\*'
however sinall the positive number ¢ muy be, Where is a wonber
of (E) greater than M —¢. \,‘
We can arrange all the real numbers in- ‘&m classes, A and B,

relative to the aggregate, A number x¢ At be put in thv class A
if one or more numbers of b) are reater than z. It will be put
in the class B if no HIpyHed ?5? iy ogrfecltltlpr than «. Sinee the
aggregate 15 bounded on thp nght there are members of both
classes, and any number of the class A is smaller than any
number of the class B. N\

By Dedekind’s Theb(éaii (§ 8) there 1s a number M separating
the two classes, such\that every number less than 3 belongs to
the class A, and ¥éry number greater than M to the class B, We
shall now shoyyphat this is the number M of our theoren.

In the f’{: ‘Place, there is no number of (E) greater than M.
For suppose there is such a number M4k (A= 0). Then the
numbgr W +3k, which is also greater than 3, would belong to
the class 4, and M would not separate the two classes A and B.
| f the second place, whatever the positive number ¢ may be, the
- number M ¢ belongs to the class A, It follows from the way
. in which the class A ig defined that there is at least one number

f (I} greaer than M -

This number M is called the upper bound of the aggregate (E).

It may belong to the aggregate. This oceurs when the aggregate

*This notation is convenient, the letter £ being the first letter of the French
term ensemble.
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contains a finite number of ferms. But when the aggregate
contains an infinite number of terms, the upper bound need not
belong to it. For example, consider the rational numbers whose
squarcs are not greater than 2. This aggregate is bounded on
the right, its upper bound being the irrational number /2, which
does not helong to the aggregate. On the other hand, the aggre-
gate of real numbers whose squares are not greater than 2 is also
bounded on the right, and has the same upper bound. But{j2
belongs to this aggregate.

1f the upper bound M of the aggregate (£) does not be)ong to
it, there must be an infinite number of terms of the “aggregate
between M and M — e, however small the positive, fuithber may
Le. If there were only a finite number of such térivs, there would
be no term of (#) between the greatest of them’ and M, which is
contrary to cur hypothesis. Y,

It can be shown in the same way ﬂ{a‘x when an aggregate (B)
is bounded on the left, there 15 @ numbe,r m possessing the following
propertres: W, d»bL aullbral y.org.in

no number of (B) is smaller than m;

however small the positive pumber e may be, there is a nuwmber

of () less than m, e

The number m d ﬁi}ed in this way is called the lower bound
of the aggregate (@), As above, it may, or may not, belong to
the aggregate when it has an infinite number of terms.  But when
the a;:gregate\has only a finite number of terms it must belong
to it. .'\“

13 ‘I{lm.ltmg Points of an Aggregate. Consider the aggregate
11 1
. :.\':. 1, 2, 3, e ?;’, [

\\ JThere are an infinite number of points of this aggregate in any
interval, however small, extending from the origin to the right.
Such a point, round which an infinite number of points of an
aggregate cluster, is called a limiting poimt* of the aggregate.
More definitely, a will be @ limiting point of the aggregate (E) o,
however small the positive number ¢ may be, there is in (E) o point
other than a whose distance from a ¢s less than ¢. I there be oné

*French, point Hmite; German, Hdufungspund.
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such point within the interval {a — ¢, « +¢), there will be an infinite
number, since, if there were only » of them, and o, were the
nearest to a, there would not be in (E) a point other than « whose
distance from a wasg less than la—a,|*.  In that ease ¢ would not
be a limiting point, contrary to our hypothesis.

An gggregate may have more than one limiting point. The
rational numbers between zero and unity form an aggregate withy
an infinite number of limiting points, since every point of, the
segment (0, 1} is a limiting point. It will be noticed thut some Syol
the limiting points of this aggregate belong to it, and somel name]v
the irrational points of the segment and its end- pomt% “do not.

In the example at the beginning of this section,

111 &
1, ﬁ, g, raa ;%, ey RN
the lower bound, zero, is a limiting point,'\gmd does not, helong to
the aggregate. The upper bound, mm;y, Belongs to the agyregate,
and is not a limiting poiut.
The set of real num@r&bﬁram]ﬁ-aﬁq/ brgnnlusive, 1s an aggregate
which is idenfical with its limithig points.

14. Weierstrass’s Theorem, An infinite aggregate, bounded above
and below, has at least Qig-e}imicmg pornt.

Let the infinite aggregate (&) be bounded, and have M and m
for its upper and loWer bounda.

We can arrange all the real numbers in two classes relative to
| the aggregateX®). A number 2 will be said to belong to the class A
:  when anjtifiiite number of terms of () arc greater than & It
will be&zid to belong to the class (B) in the contrary case.

bmce' m belongs to the class A& and M to the class B, there are
rmm\bers of both clasges. Also any number in the class A is less

an any number in the class B.

By Dedekind’s Theorem, there is a number u separating the two
clagses. However small the positive number ¢ may he, p—e¢
belongs to the class A, and g +¢ to the class B.  Thus the interval
contains an infinite numher of terms of the aggregate.

Hence pis a limsting point.

: *It is usual to denoto the difference between two resl numbers @ and 8, taken
i positive, by 'a - b'| and to call it the absolute value or modulus of (¢ - b).  With this
notation l:r+y5 =+ s (=] =2y



13-15] INFINITE SEQUENCES AND SERIES 37

As will be seen from the example of § 13, the bounds M and m
may be limiting points.

An infinite aggregate, when unbounded, need not have a limiting’
point; e.g. the set of integers, positive or negative. But if the
aggregate has an infinite number of points in an interval of finite
length, then it must have at least one limiting point.

ib. Convergent Sejuences. We speak of an infinite sequenge

of numbers My, Ma, by, -ae By, «es
when some law is given according to which the general re'm} Uy,
nay be written down. . s.

The sequence Uy, Ug,  Ug e N

is said to be convergent and to have the limit 4, whe@\by indefinitely
Tncreasing n, the difference between A and u,, beoowwes, aund thereafter
remarns, as small as we please. )

This property is so fundamental that\t s well to put it more
precisely, as follows: The sequence i85gd to be convergent und to

huve the limat A, when, an Jvﬂ@%&tﬂjfrﬂﬂmﬁﬁﬁf C}&vwg been chosen,
as small as we please, there 1s a ppszme mteJer v such that

| A —2,] < 6 ,?:romded that n= v.
For example, the S&quenc‘é’
\1 11 1
\\,, g gy
has the limit zerd, since 1/n is less than e for all values of u greater
than 1fe. A/

The notatidf that is employed in this connection is
N\

and\We say that as n tends to infinity, u,, has the limit 4.%
\3 The letter ¢ iz usually employed to denote an arbitrarily small
\pOSitive number, ag in the above definition of convergence to a
limit as » tends to infinity. Strictly speaking, the words as small
as we please are nnnecessary in the definition, but they are inserted

as making clearer the property that is being defined.

We shall very frequently have to employ the form of words
which occurs in this definition, or words analogous to them, and

lim 2, =4,

N0

*The phrase * u, tends to the limit 4 as » tends to infinity™ is also used.
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the beginner is advised to make himself familiar with them by
formally testing whether the following sequences are convergent
OT hot :

1 1 1 Il
((I.) 1, E, ﬁ'é,---‘ (C) 1. 1+2, 1*2—!‘22,...‘
1 1
I R O A N

A sequence cannot converge to two distinct limits 4 and™\B.
If this were possible, let ¢<21 |A— Bl. Then there are, tmly‘a
finite number of terms of the sequence omtside thel iiferval
(4 —¢, 4 +¢), since the sequence converges to the mlﬂe 4. This
contradicts the statement that the scquence has l.lm‘tho limit B,
for we would only have a finite number of tefrieMn the interval
of the same length with B as centre. N

The application of the test of convergmlcv contained in the
definition involves the knowledge of thevlimit 4. Thus it will
frequently be impossible to use it.o\ The required criterion for
the convergence ofw‘“’%‘é{i‘ﬁﬁﬁ'ﬁ%‘bj{éﬁgﬁrxgé Wre not simply asked to
test whether a given number‘ls \or i3 not the limit, is contained

+in the fundamental general principle of convergence: *

A necessary and sufficient condition for the existence of « limnat

0 the sequence \\ Uy, Ugy Mg, -e-

is that a positive {fidger v ewists such that |u,.,—1,| becomes as
small as we pleasesbhen n = v, for every posilive integer p.
More exacfﬁ\

A nece&&&rg “and sufficient condition for the existénce of ¢ limit
to the seq.u,eme Uy, Uy g e
is. thod, zf any positive number ¢ has been chosen, as small as we
pledse, there shall be @ positive integer v such that

[ iy = Uyl <&, when n= v, for every positive integer p.
We shall first of all show that the condition is necessary; .. if

*This is one of the most important theorems of analysis. In the words of
Pringsheim, “Dieser Sutz, mit seiner U'bertra.gung auf beliebige (z.B. atetige)
Zahlenmengen—von du  Bois-Reymond als das ‘allgemeine Convergenzpringip’
bezeichnet {Allg. Funct.-Theorie, pp., 6, 260)—ist dor eigentliche Fundamentalzaiz
der gesomion Analysis ond sollte mit geniigender Betonung seines flmdammta]cn

Characters an der Spitze jedes rationellen Tehrbuches der Analysis steben,”
loc. edt., Ene. d. math. Wiss, p. 66.
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the sequence converges, this condition is satisfied; secondly that,
# this condition is satisfied, the sequence converges; in other
words, the condition is sufficient.

(i) The condition 13 necessary.

Lt the sequence converge to the limit 4.

Having chosen the arbitrary positive number ¢, then take Je.

We know that there is a positive integer » such that ~
|4 —w,|<<1¢, when n=», .
¢\
But ( fip ﬂ) (uﬂ+u-A) (A_uﬂ) '\ \
Therefore [ty — nl = |y p— A| +]4 = 14, Ny

<< 1e + e, ..f
if n=v, for everysgomtlvc integer p,
= g
() The condition is sufficient. AN
We must examine two eases; first, Kh*en the sequence contains
an infinite number of terms equal¥ovone another; second, when
15 does not. WOWW, dbl. aullbrary org.in
(e} Let there be an 1nﬁn1te~number of terms equal to A,
Then, if ".'
[tp2p = U] <L e, Wheh ﬂé v, and p is any positive integer,
,,H,_‘At[‘or some value of p, and we have
\\|A #,|<<e, when nz=y.

Therefore fuhg fequence converges, and has 4 for its limit.

we may take «

() Let, thgre be only a finite number of terms equal to one
another. &

T, \mg chosen the arbitrary positive number e, then take e

W2 know that there is a positive integer ¥ such that

O

nap — Mol <3¢, when n=N, for every positive integer p.
N/ It follows that we have
J14, — ty] << te, when nz= N.
Therefore all the terms of the sequence

Unp1r UNi2 YFig -e-
lie within the interval whose end-points are uy ~ 1e and uy + L.
There must be an infinite number of distinet terms in this
sequence. Otherwise we would have an infinite number of terms
equal to one ancther.
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Consider the infinite aggregate (B) formed by the distinct
terms in Uy, Uy, Uz, eee s

This aggregate is bounded and must have at least one
limiting point 4 within, or at an end of, the above iuterval
(Cf. §14.)

There cannot be another limiting point A°, for if there were
we coald choose e equal to }|4 ~ 4°] say, and the formuia

f,1p = ol <Ce, when n = v, for every positive mteger p, RO\
NS ¢
shows that all the terms of the sequence « M

a
S D

Uy, Mg, Uy .o,

except a finite number, would lie within an mtei‘v\al 0{ length
114 —4’). This is impossible if 4, 4" are limiting poiuts of the
aggregate. ¢ \\
Thus the aggregate (£) has one and Only‘ (?nc limiting point 4.
We shall now show that the sequence

wartdbrdlti br%ﬁy sorg.in

converges to A as »n tends to «.

We have -4 ={ua- HN) +Huy - 4).
Therefore Uy, A | = ]}‘n uyl +luy— 4|
X de +  de, when nz N,
N < e when =3 N.

Thus the sequenbe converges, and has A4 for its limit.
We have t}kei%'fore praved this theorem:
A nec‘ee;‘;{:(y and sufficient condition for the convergence of the
sequence Wy, U, g, ...
5 J»Emt 1o the arbitrary positive number ¢, there shall correspond o
Emme integer v such that

[tnyp— ] <e, when nZ v, for every positive integer p.
It is easy to show that the above condition may be replaced by the
following:
In order that the sequence
Uy, Mg, g ...
may converge, i is necessary and sufficient that, to the arbitrary positive number €,
- there shall correspond a positive integer n such that

[pap ~ tty| < € for every positive integer p.
It is clear that if the sequence converges, this condition is satisfied by #=v.
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further, if this condition ix satisfied, and ¢ is an arbitrary positive number,
to the number ¢ there corresponds a positive integer # such that
loty e p — 2, | < 4e for every positive integer p.
But [#sp™ = tnipe| 75 Pepgpr ~ tig| 4 [t g — 22y
< 3e+1e, when ¢, p”* are any posiiive integers.
Therefore the conditien in the text is also satisfied, and the sequence con
VETZES.
16, Divergent and Oscillatery Sequences.* When the sequence
Q"
Hy, Hg, gy .-
+ . N
does not converge, several different cases arise, oA
(i} In the first place, the terms may have the pfoperty that
if any positive number 4, however large, is ch@sm there is a
positive integer v such that fs.
‘ &
u, >4, when 5= )
In this case we say that the sequience igydivergent, and that 1t
diverges to 4o, and we write this \

lim 2, =Pes .

(i) Tn the second place, thy Sarme IREY %248 ¥he property that
it any negative number ~ 4%s chosen, however large 4 may be,
there 18 a positive m‘reger such that

tig= - A, when n=».
In this case we, gdy)that the sequence is divergent, and that it
diverges to ~ on, antl we write this

) lim w,= —oo.
AN —r00
The terms of a sequence may all be very large in absotute value,
wheu @ us very large, yet the sequence may not diverge to +o0 or
to %, A sufficient illustration of this is given by the sequence

.\’E;'}i‘(!se general term ia { — 1)"n.

' After some value of » the terms must all have the same sign,
if the sequence is to diverge to +w or to —o, the sign being
positive in the first alternative, and negative in the second.

(1) When the sequence does not converge, and does net diverge
to +oo orto — oo, it 18 saed to oscillate,

*In the first edition of this book, the term divergent was uscd as meaning
merely not convergent. In this edition the term is applied only to the case of
divergence to +w or to —oo, and sequences which oscillate infinitely are placed
among the oseillatory sequences,
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An oscillatory sequence is surd to oscillate finitely, ¢f there s
. @ positive number A suwch that [u,| <2 A, for all values of n; and i
8 said to oscillate infinitely iwhen there is no such nundwer.

For example, the sequence whose general term is { — [ j* oscillates
finitely; the sequence whose general term is (- 1)"n oscillates
infinitely. '

We may distinguish between convergent and divergent se-
quences by saying that e convergent sequence has « finite fomit,
ze. lim u, =4, where 4 is a definite number; « divergent sequehge

H— o

. . . . . . . 7'\
has an infinite limd, 2.e. limwv, = + o or lmw, * - o0, O\

H—> -0

But it must be remembered that the symbol | and: e terms
infinite, infinity and tend to infinity, have purelg\mme‘ltmnal
meanings. There is no number infinity; Phrasgsvin which the
term 1s used have only a meaning for us whep,we have prev jously,
by definition, attached a meaning to them, \

When we say that n fends to infinityswe are using a short and
convenient phrase to eXPIEss the fach, that % assumes an endless
series of values which” even%lugﬁ\fbg me and Terain greuter than
any arbifrary (large) positive numl’n’:r So far we have supposed a,
in this connection, to advange through integral values onily. This
restriction will be removed{ater.

A similar remark & JRileb to the phrases divergence fo Lo OF
to — oo, and oscillafbug infinilely, as well as to our earlier use of

- the terms an infihie” number, infinile sequence and infinite aggre-
| gates. Tn eachcase a definite meaning has been attached to the
term, and iti8‘employed only with that meaning.

It is true that much of our work might be simplified by the

] introditetion of new numbers +o0, — w0, and by assuming the
ex;steﬁce of corresponding points upon tho line which we have
. uded as the domain of the numbers. But the creation of these

| numbers, and the introduction of these pointg, would be a matter
| for separate definition.

17. 1. Monotonic Sequences. If the terms of the sequence
Uy, Ug, Hg, ...
satisfy either of the following relations
Uy ZE U Uy .
ar g TZ Ug = Hy ..
the sequence 18 said to be monotonic.

|.v II\

= Uy,
i,

e
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In the first case, the terms never decrease, and the sequence may
be called monotonie tnereasing; In the second case, the terms never
increase, and the sequence may be called monoionic decreasing.®

Cbviously, when we are concerned with the convergence or
divergence of a sequence, the monotonic property, if such exist,
need not enter till after a certain stage.

The tests for convergence or divergence are extremely simple in
the case of monotonic sequences. .

If the seqience Uy Ug, Uy, .. <\

15 monotonie tnereasing, and its lerms arve afl less t?zan é\a?ne Jired
number B, the sequence 5 convergent and has for its I:mu @ number
3 such that w, = § = B for every positive integer n.g ()

(fonsider the aggregate formed by distinct teths of the sequence.
1t is bounded by #; on the left and by B oh)he right. Thus it
must have an upper bound g (cf. § 12),€gual to or less than 5,
and, however small the positive nunfh€h ¥ may be there will be a
term of the sequence greater than gk

Let this term be w,. Phew difhlsbienyordtier «,_, are to the
right of #— ¢ and not to the sight of 8. If auy of them coincide
with 7, from that stage on +he terms must be equal.

Thus we have shown shat

liﬁ:— #,)<“e, when nzv,
and therefore the s}quence is convergent and has 8 for its limit.

The followingtest may be proved in the same way :

If the se -ué”-r?ce Uy, gy Ugs e
1s monolonse decreasing, and its terms are all greater than some fived
niinbencA, then the sequence s convergent and has for its limit a
number a such that u, = a = 4 for every posilive tnteger n.

~ Tt is an immediate consequence of these theorems that a mono-
N Aonic sequence cither tends to a limit or diverges to +-oc or to —
17, 2. The Upper and Lower Limits of Indetermination of a Bounded Sequence.

Let w0, 4y, %4, ... be a scquence, bounded above and below.

Let M, be the upper bound of wy, #y, s, Uy, --- ,
and M, be the upper bound of ug, #,, 4, ...,
and so0 on,

*The words steadily increasing and steadily decreasing are sometimes employed
in this connection, and when none of the terms of the sequence are equal, the
words fn the stricter sense are added.
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Similarly let m,, my,, mg, ... be the lower hounds of the corresponding
Bequences.
Then My =M oM
Thus Jim M exists (§17. 1.}.
e

Let this limit be A.

To the arbitrary positive number ¢ there corresponds a positive integer v,
guch that _

AZ M, <A+e when n 7w,

But M, is the upper bound of #,, %y.y, %rsa, - ¢ A

Therefore %, = M., when n = . \' \\

Thus ,<<A+e when »Zw

Algo at least one of the set w#,, #. ., oy, .- (88Y 25} 19 grmter(t\i@p M, -,
and thus greater than A - e, s

Take v’ a positive integer > N, .~.;\§

Then A=EM, 2. ’

And at least one {say u,) of the set w,r, 4,040 W, L‘,_,\\.l:; greater than A ~e
In this way we have the infinite set v

.

Wy, MWy Upr, #NN }

all greater than A —e. \

We have thus shown that ﬂ}fﬂ?—éﬁ[‘iwgﬂﬁrﬁ gisoviated with the bounded
SEQUENCE ¥, U Uy .- . which has the fﬂllbwmg properties :

If € is an arbitrary positive number) aly, < A+, for all positive integers greater
than o definite infeger depending g and u, > A — ¢, for an infinite wuwmber of
posifive inlegers. \

Similarly for the lower bo@ld‘s My, Mg, My, .. we sec that lim m, exists.

prpmyery

Denoting this limit HiwA, we have the corresponding result; wu, > A -5, for
all values of n greater’ s @ definite value defpendmg on e and i, << A re for
an infinile number Gfwalucs of n.

The numbers\zmnd A are called the upper and lower [imils of indetermination

" of the seque:rk\., and we write
- O A=Timu, A=linu,
™S R0 A
Itdselear that A= A
\1?. 3. Let tty, vy, iy, -, U, Vg, Uy ... be sequences of positive terms, the first
|_ sequence being bounded above, and in. the second lim »,, being equal tv nnity.
Then. lim {rpt,) =jim . alas
o f—wriat
It is clear that as wy, w,, #,, are positive und the BRQUeTCE Uy, Uy, g oo 13

* bounded ahove, the sequence of positive terms U2y, Uolly, Ugly, ... i3 bounded
| above.

- *French : lu plus grande Hmite and g plus petite Wmite, or fmites & indeterming-
i fion. German : obere and untere I7 nbestimmtheitsgrenze. Other terms are used;

. e.g. obere (untere) Heiufungsgrenze: oberes (underes) Limes; and Fimes superior
; ! {infericr).
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If possible, let llm (u,;uﬂ} =p'> p=Tim u,

H—
Take Be=p" —p, and let the upper bound of %,, u,, 4, ... be K.

Since lim w, =1, there is & positive integer v,, such that
H—>x0

fo, — 1| <—, when ==
Thus j'“‘nﬂn - 7"’1:] = luﬂ] fvn - 1} <K x 2? = és, when n = Vi-

Therefore Uy, < U, + 36, when nZ v,

But since Tim #, = p, there is a positive integer vy, such that
l—-0 N\

#,, <7 p + §€, when n = vy, R \)
Therefore Uy <<+ €, when n =, . \,,\
where 1 ig the larger of the integers 1, and v,. N

But since ET_&(RRVN) =p', we know that w,m, > 1" — ¢, fc{‘ ab infinite number
of values of n,

Therefore p’ cannot be greater than p.
%1m1lar1y it can bo shown that i is nof less that}p
Hence p' =4 and the theorem is proved. \ g

N

17, 4. (i) If the sequence 4y, Ug, Ug, - com:erges then Tim u, =lim u, =lim %,
WO W, dJ;raulleary #rgein fra—c) Pa—
Since #,, #g, 4y, ... CONVETgeS, it mtmt be o bounded sequence, and Im u,,

. H—0
{im u, both exist. R
nw any

We have to show that thgh are equal to hm g,

~\
Let lim 2, =) lim 2,5 A, and lim un=)t.
O A .

If possible, let A% I, and take Ze=A -1
Then there, 13,3 p(imtl ve integer v, such that
,\ > Uy <l+e¢, when n=tv,
But wesate given that u, > A — ¢, for an infinite number of values of =.
The\e\t‘-Wu inequalities cannet both be frue.
Thug A eannot be greater than I
,In's similar way we can show that A cannot be less than L.
“\\WBut AZ A
\ /' Therefore we must have A=A=L
(ii) Conversely, if the upper and lower limils of indetermination of the bownded
SEQUENCE Uy, Uy, Mg, ... are equal, then the sequence converges fo their common
value. :
We are given that .
ling 4, = A = A =lim %,

H—+T D
Thus, to the arbitrary positive number ¢, there correspond positive integers.
vy and v, such that u,<<A+e when n= v,

> A —¢, when 5 vy,
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Hence {#t, ~ Al <e, when 5 Zv,
whete » is the larger of the two positive integers v, and v,
Thus Tim #, =lim u, =Ym u,.
P—e ﬂ:é n—0

(iii) With this notation it ia easy to establish the general principle of con-
vergence {p. 38), namely that a necessary and sufficient condition for the exist-
ence of @ limit to the sequence wy, Uy, U, ... is that, if any positive number ¢ hag
been chosen, as small as we please, there shall be o positive integer v, such thaty
[thgyrp — %y, << €, when nZ v and p is any positive infeger,

There is no dﬁﬁcu‘nty in showing that this condition is nevessary fog Siie

convergence of the sequence. (Ci. p. 39.) 7\
The difficulty in our former proof was to show that the comhhon was
sufficient. N

Baut, it ia elear that with this condition, the sequence u,, 1, &34/ is bounded,
Tta upper and lower limits of indetermination therefore eRizt)
With the same notation as before, let A and A be uneduial.

Take 2e=A A ,:1\\'
| There is a positive integer v, such that ;'x\ -
| [#pep — gl << €, when n= s arid'p—l 2,8 i e (1)
:| But Uy < A F %ewiﬂmadlhnﬁnitblﬁi’m&xgomvalues of e oo (2}
! And w, = A~ }e, for an mﬁmte number of values of %, ....roeeovoor {3)

1 Let v, v” be the first pm1t1ve~mt,egers greater than v which satisfy (2} and
{3) respectively.

~\
Then {w.* — t|> ¢, contmary'to (1).
Therefore A and A age eqial, and by (ii) lim w,, exists,
N o —00

18. Let A\, Ay A,, ... be an infinite set of closed intervals, each
lying entwelg'\mcﬁm the preceding, or lying within it and having
with 1t ¢ common end-pownt; also let the length of A4, tend to zero
as 1 terds'to infinity. Then there is one, and only one, povnt which
! belongs to all the vntervals, either as an internal point of all, or, from
'_ q{nd after a definite stage, as a common end-point of all.

1 — . l Il
T T 3 T T

—_ 1
oy 2y O = B 3, 6: &

\ ¥, 3.

Let the representative interval 4, be given by
@, =r=h,

" Then we have ) =0y = Gy ... << by,

~and by=by= by ... >a,.
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Thus the sequence of end-points

@y, @y, Bg.oer veimieaririiaao (1}

has a imit, say @, and @, = a for every positive integer » (§ 17. 1).
Also the sequence of end-points

by, bay By, e (2)

has a limit, say 8, and b, &= § for every positive integer » (§ 17. 1).

Now it is clear that, under the given conditions, § cannof be

less than a.

Therefore, for every value of », ) \ N,
bpy—ty>B—az0, A\
But lim (b, ~a,)=0. e\
R w'\&

[ follows that a=g.*

Therefore this common limit of the sequ&ces 1) and (2) satisfies
the inequalities ¢*{
t, = az=b, for every 'Rositwe intsger n,

and thus belongs to all the mtcrva]s
Further, no other point "@”6" Shraalibratumrsins y = b, for all
values of »n.
Since we would have at’ the same time

1111‘1\@,, =y and limb, =y,

)

which is 1mposs:1b\1e\unless y=a.
19. The Sum of an Infinite Series,

Let ) Uy, Uy, Ugy ees

be an mﬁmfe sequence, and let the successive sums
O S = U

\»O Sp= iy Uy,
A~ e
\/ $p== g Uy FUy T Uy,

be formed.
If the sequence 815 Sz Sgy s

18 convergent and has the imit s, then s 1s called the sum of the infinute

seres 16y +tty Hitg +

and. this series 1s said {o be convergent.

*This result also follows at once from the fact that, if lim g, =« and Im b, =8
then lim {a, — b )=a -8 (Cf. §26, Theorem L.)
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It must be carefully noted that what we eall the sum of the
infinite series is @ frmdd, the limit of the sum of » ferms of
Uy iy oy o,
as n tends to infinity. Thus we have no mght to assume without
proof that familiar properties of finite sums are necessarily true
for sums such as s.

When lims,= +ew or ims,= -0, we shall say that the\
Fo—er A Hwom
infinite series is divergent, or diverges {o +o0 OF — oo, as the(Case
may be. NS ©

[f 5, does not tend to a limit, or to +o or to - q;‘,\'t-hen o
oscillates finttely or infinitely according to the deﬁxgi{:-ibns’ of these
terms in §16. In this case we shall say that thesefies oscillutes
Sinitely or infinztely.® ’ '

The conditions obtained in § 15 for the conmérgence of a sequence
allow us to state the criteria for the copierfence of the series 1
either of the following ways: o\

(i) The series converges and has, s'gfo}i%ts sum, if, any positive
number ¢ having beel ¥R: l:aclf.éls,bzgjéa} as e please, there is @ positive
integer v such that s _ s | <Shhen .

(ii) 4 necessary and ;j@ient condition for the convergence of
the series is that, if auy wositive number « kas been chosen, as small
as we please, there sha\ll\ ¢ a positive integer v such that

|8n1p = 8ul Eeybhen n 2 v, for every posttive integer .}
It 1s clear that\, of the series converges, lim w,, =0. Thig iz con-

H G

tained in_theévsecond criterion. It is a necessary condition for
convergence, but it is not a sufficient condition; e.g. the series

‘55 L+g+d+...
isdivergent, though lim #,, =0.
T

1f we denote
uﬂ+l +uﬂ+2 +... +u11-l—;-1 or s‘n-t--p — 8as bY pR‘r‘
the above necessary and sufficient condition for convergence of
the series may be written
|»Ral <e, when n= v, for every positive integer p.

*Cf, footnote, p. 41.

{As remarked in §15, this condition can be replaced by: T'v the arbitrary
positive number ¢ there must correspond a positive integer n such that

[#a1e — Sn|<Ce for every positive integer p.
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Again, if the series Uy Uy +Ug o
converges and has s for its sum, the series
Upsy Fppg FUnig T+ onr
converges and has s — s, for its sum.
For we have Sprp="Sn+plin

Also keeping » fixed, it Is clear that

lim s,,,=s. O
D —m
N ¢
Therefore lim (R, }=s-s, (\)
P O
k3 + . N
Thus if we write R, for the sum of the series
N
u“+1+uﬂ+z+..., ":’.
we have s=s,+H,. "’\

The first criterion for convergence can oW be put in the form
iR |<e, when w -‘)

R, 15 usually called the re-mai-npi’e-?“h the series after »n terms,
and R, ors,, ,—&,a P“*“Mﬁ? { @é%ﬂ%i’ary.org.in

20. Series whose Terms a,re'aJl Positive,

Let gt teg + g .
be a series whose te?‘ms\(;?‘e all posttive. Ter sumn of n terms of this
series either tends t&a Jemit, or it diverges to +oo.

Since the tefms are all positive, the successive sums

3

AN/ 8=y,
"\x\ Sp=1; +U,
”" Sg=1y +Ug +%g,
&
2 e -
AN

,<\3 form a monotonic increasing sequence, and the theorem stated

above follows from § 17, I,

When a series whose terms are all positive is convergent, the series
we obloin when we take the terms tn any order we please s also
contvergent and has the same swm.

This change of the order of the terms is to be such that there
will be a one-one correspondence between the terms of the old
series and the new. The term in any assigned place in the one

series is to have a definite place in the other.
C.1. n
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Let S, =1y,
Sy=thy +Ug,
Sg==Mq +Hg Uy,
Then the aggregate ({7), which corresponds to the scquence
Spp Bay Hmy e,
is bounded and its upper bound s 1s the sum of the series.

Let (T7') be the correspondmn aggregate for the series obtained
by taking the terms in any order we pleage, on the vndorstandmg
we have explained above. Every number n ({7} s LQHH “Than s.
In addition, if 4 1s any number less than s, there mugt e 4 number
of ({1} greater than 4, and a fortiori a number of 4 lj\) greater than
A. The aggregate (I7') is thus bounded on theJysht, and its upper
bound is s. The sum of the new series is thf:sé{oro the same as the
sum of the old. Ay

P

1t follows that if the sertes :‘ \

b—i tho + iy +
whose terms are all posat\'g; g, ﬁifp%ﬁ?fﬁ?fpﬂes we obiain by changing
the order of the terms must also dawrge

The following theoremyolay be proved at once hy the use of
the second condition fof donvergence (§ 19):

If the series . \ Ty + 2y +0g +

18 convergent aﬂd all its terms are pmatue the series we obtuin from
this, either \
()b Feeping only a part of its terms,

or 35\5'9' replacing certain of its terms by others, either positive

N 3% or zero, which are respectively equal or inferior to them,
“Nor' (3) by changing the signs of some of its terms,

fe also convergent.

21. Absolute and Conditional Convergence. The trigono-
metrical series, whose properties we shall investigate later, belong
to the class of series whose convergence is due to the presence of
hoth positive and negative terms, in the sense that the series would
diverge if all the terms were taken with the same sign,

A series with positive and negative feyms s said to be absolutely

convergent, when the series in whick all the terms are taken with the
same sign converges.
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In other words, the series
By g FUy ...
iz absolutely convergent when the series of abgolute values
_ [t] #+ueg] +]ug] +...
18 convergent,

Tt is obvious that an absolutely convergent series is also con-
vergent in the ordinary sense, since the absolute values of the
partial remainders of the original series cannot be greater than
those of the second geries. There are, however, convergent,; Senes
which are not absolutely convergent: O

e.g. 1-—3+% ... 18 convergent. ¢‘~:’«,
1 +%+4% ... is divergent. 7

Series in which the convergence depends wporfie presence of both
positive and negative lerms are said to be conditonally convergent.

The reason for this name is thdt, ag e shall now prove, an
absolutely convergent series remains camkrgent and has the sume
s, even although we alter the Gpier in which its terms are
tuken; while a conditionally Eﬁﬁk@ﬁﬁ?fﬂl&m yhawsdenverge for one
arrangement of the terms and diverge for another. Indced we
shall see that we can make-a conditionally convergent series have
any sum we please, orh® greater than any number we care to
name, by changing theyorder of its terms. There is nothing very
extraordinary int ig'statement. The rearrangement of the terms
introduces a nefk Junction of #, say ¢, instead of the old function

Sy, as the sum of the first n terms. There is no & priors reason why
this funetu‘hq s, should have a limit as # tends to infinity, or, if it
has a l}(u.ﬁ that this should be the same as the limit of 5,,.*

22 Absolutely Convergent Series, The sum of an absolulely
..&qntergmt series remains the same when the order of the terms is
\, :ékaﬂged.

Tet (8) be the given absolutely convergent series; () the
series composed of the positive terms of (S) in the order in which
they appear; (8”) the series composed of the absolute values of
the negative terms of {S), also in the order in which they appear.

1f the number of terms either in (8) or ($”) is limited, the
theorem requires no proof, since we can change the order of the

*Cf. Osgood, Tntroduction o Infinite Series (1897), 44.
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terms in the finite sum, which includes the torms of (S) up to the
lagt of the class which is limited in number, without altering its
sum, and we have just seen that when the terms are of the same
sign, as in those which follow, the alteration m the order in the
convergent series does not affect its sum.

Let o be the sum of the infinite series formed by the absolute
values of the terms of (S).

Let s,, be the sum of the first » terms of ().

In this sum let #’ terms be posiﬁive and a” negative. \ \)

Let s, be the sum of these n' terms, \.

Let s,- be the sum of the absolute values of these »’ formfs taking

in each case these terms in the order in which tht,v (L:pmr i (S).
Then S =8y —

Q

Sty
Spr<l @, )
n x.\\,
Syl O .\
Now, as n increases sy, s,» never dighimish.  Thus, as » increases
without limit, the successive valugs, of $ury & form two infinite

monotonic sequences ﬁﬁﬁi‘aﬁﬁl}?ﬁfﬁ%ﬁ gramwined in §17. 1, whose
terms do not exceed the fixed n‘umber . These sequences, there-

fore, tend to fixed limits, say, s and s”.
ThllS ) ’M (SN} :S’ _ S”.

=

Hence the sum of }‘ke absolutely convergent series (S) is equal to
the difference befwé@ﬁ, the sums of the two infinite series formed onc
with the poszme ferms in the order in which they appear, and the
other with d{e}zbsolute values of the negative terms, also in the order.
" uku‘l{&?my appear tn (S).

NQW any alteration in the order of the terms of (8} does not
’gh,ange the values of 5" and s”; since we have seen that in the case
Sof a convergent series whose terms are all positive we do not ali?er
the sum by rearranging the terms. It follows that (S) remuains
convergent and has the same sum when the order of its terms is changed
in any way we please, provided that a one-one correspondence exists
between the terms of the old series and the new.

We add some other results with regard to absolutely con wrgent
series Which admit of simple demonstration:

Any series whose terms are esther equal or inferior wn absolute

value to the corresponding terms of an abselutely convergent series i
also absolutely convergent.
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An absolutely convergent series remuing absolutely convergent when
we suppress a certusn number of its terms.
Iy Uy +Ug e,
B+ PaFo,

ave two absolutely convergent series whose sums are U and V, the

series (o, +2,) + (U +15) +.0

and {1ty —vy) F (g — Ty} +.. ~
are also absolutely convergent and their sums are equal to UNXV
respectively, ¢\ \

23. Conditionally Convergent Series. The sum of a mr?dztmmfﬂy
convergent series depends essontially on the order of ity Lerins.

Let (8) be such a series. The positive aq§\negat1\'9 terms
must both be infinite in number, sinee otherdase the series would
converge ahsolutely.

Turther, the series formed by the p qu\,l\fe terms in the order
in which they oceur in (S}, and the sgrles formed in the same way
by the negative terms, mu‘;t‘(Whg}%«dﬁ!}ﬁTgﬁg}tm -g.in _

Both could not converge, sineedn that case our series would be
equal to the difference of 40 absolutely convergent geries, some
of whose terms might be 2ero, and therefore would be absolutely
convergent (§22). Al {S) eould not converge, if one of these
series converged and\the other diverged.

We can therefors take sufficient terms from the positive terms
to male ’t.heir sum exceed any positive number we care to name.
In the samE'Way we can take sufficient terms from the negative
terms to\m}ke the gum of their absolute values exceed any number
we care to name.

Let a be any positive number.

\Flrbt take positive numbers from (S} In the order in which they

\ Jappear, stopping whenever the sum is greater than @. Then take

negative terms from {S), in the order in which they appear, stopping

whenever the combined sum is less than 2. Then add on-as many

from the remaining positive terms as will make the sum exceed a,

stopping when the sum first exceeds o; and then proceed to the
negative terms; and so on,

In this way we form a new series {8’} composed of the same
terms as (8), in which the sum of » terms Js sometimes greater
than ¢ and sometimes less than a.
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Now the serics (&) converges. Let 1ts terms be w, w,, u,,
Then, with the usual notation,
J#,| <<€, when x v
Let the points B, and 4, (Fig. 4) correspond to the sums obtained
in (8'), as deseribed above, when v groups of posiuve terms and
v groups of negative terms have heen taken. N

1 ! N
Ay i B 2AN
FIu 4. P\

Then it is clear that (a— A4,) and (B, @) arc cacly degé than e,
since each of these groups confains at least one tefyh'of (5), and
(2 - 4,), (B, — a) are at most equal to the ubsolutzé"*g\aﬂun of the last
term in each group.

Let these 2¥ groups contain in all »* tcrm},\.\'

The term #',,- in (5°), when »’ =", 18 lc};’s\in’absolute value than &
Thus, if we proceed from A4,, the sqnié'é’nx lic within the interval
{@—e ate), Whenw?%:r%Jl;’rauljbra.r‘y’.;)}g.in

In other words, |s",, —a] < e When »' 4.

Therefore R

Ao

A similar aﬁrgumentiﬁst for the case of a negative number,
the only difference }x}ing that now we begin with the negative
terms of the serief.)

We have @hué\estab]ished the following theorem:

Ifa comii?zfonally convergent series 18 ivem, We CER S0 QITANGE
the ordf»%f the terms as to make the sum of the new series converge
to a-g’oyj;@alu-e we eare to name.

'S
T\ REFERENCES.

Bromwick, lec. cit., Ch. -1V,

DE La VALLKE Poussin, loc. cif,, b (5¢ éd., 1923), Introduction § 2, Ch. X1
§61, 2.

GOURSAT, loc, oif., 1 {48 éd., 1023), Ch, T and VIII.

Haroy, Oourse of Pure Mathematics (5th ed., 1928}, Ch, IV and VIIL

Kxwove, loe. cit., English transletion, Ch, 111, VIT]-X.

PRINGSHEIM, loc. eit., Bd. L, Absch, I, Kap. 1II, V, Ahsch. 1I, Kap. I-1IL

Srorz v. GMEINER, loe. cif., Abth. IT, Absch, TX.,

And

PriNgsuaiM, “Irrationalzahlen u. Konvergenz unendlicher Prozesse,”” Ene.
d. math, Wiss., Bd. I, TL T {Leipzig, 1898).



CHAPTER IIT A

A,

e A

FUNCTIONS OF A SINGLE VARIABRF:
LIMITS AND CONTINUITY /N

7

.

24, The Idea of a Function. In Elementary ':\f{\athcmatics, when
we speak of a function of #, we usuallygnéan a real expression
obtained by certain operations, e.g: a‘?;.\ Jo, logz, sinvz. In
some cases, from the nature of thé¥gpérations, the range of the
yariable ¢ is indicated. In the first of the above examples, the
range is nnlimited; in th?f‘é’%%ﬁ*ﬁﬁ'f“é:“;&“@;"ﬁiﬁ"ﬁl‘é‘ third 2>0; and
in the last |¢| = L. ONY

In Higher Mathematics the term “function of ©’ has a much
more general meaning{\ Let a and b be any two real numbers, where
b=a. Ifio e-very.t'@e;e‘ of @ in the inderval @ =« = b there corresponds
a {real) numberyy, Yhen we say that y is a function of ¢ in the interval
(«, 1), and weywrite y —=f(x).

Somet-jm’cg the end-points of the interval are excluded from the
domai,n\’o\f“m, which is then given by a<tz<b. In this case the
inte‘a.r@l’is said to be open at both ends; when both ends are
indlnded (ie. @ =2 =b) itis said to be closed. An interval may be

(“gpen at one end and closed at the other (e.g. a<® = b).

o

Tuless otherwise stated, when we speak of an interval in the
rest of this work, we shall refer to an interval closed at both ends.
And when we say that z les in the interval (@, &), we mean that
@ % = b, but when % is to lie between & and &, and not to coincide
with either, we shall say that z lies in the open interval (a, By

Consider the aggregate formed by the values of a function f(z},

*In Ch, IT, when a point x lies between a and &, and does not coincide with
either, we have referred to it as within the interval (e, t3.  This form of words is
convenient, and not likely to give rise to confusion,

a5
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given in an interval (2, b). If this aggregate is bounded (¢f. § 11),
we say that the function f(x) is beunded in the interval. The
numbers M and i, the wpper and Iower bonwds of the aggregate
(cf, § 12), are called the wpper and lower bownds of the function in the
interval. And a function can have an upper bound and no lower
bound, and vice versa. :

The difference (M —m) is called the oscillation of the function in 4
the interval ¥

1t should be noticed that a function may be determinate m\aﬁ
interval, and yet not bounded in the interval. O

Eglet  f0)=0, and J(z) =,1 when £=0.

¢°{

ol

Then f(z) has a definite value for every « in the m‘rm}dl Oizta,
where a is any given positive number, But f{x}N® not bounded in
this interval, for we can make f(z) exceed apynumber we care to
name, by letting & approach sufficiently fi€ar to zero.

Further, a bounded function need et attain its nupper and
lower bounds; in oth@rm&tﬁtkulﬂﬁmfbvg.mmed not be members of
the aggregate formed by the val‘ue;féff(x) in the interval.

Eg.let  f(0)=0, and f{i=1-» when O<z=_1.

This function, given in th.e‘mtervai {0, 1), attains its lower hound
zero, but not its uppel\b@und unity.

25, lim f(x). In the previous chapter we have dealt with the

w—d

Jimnit when nf;\ao of a sequence U, Uy, %g, ... . 10 other words,
we have k&:mdeahng with a function ¢(n), where n is a positive
integer, anddwe have considered the limit of this function as #->% .

We. paist now fo the function of the real variable z and the limit
oijf(ﬂ when z—¢. The idea is familiar enongh, The Differential
Caléulus rests upon it. But for our purpose we must put the
matter on a precise arithmetical footing, and a definition of what
exactly is meant by the limit of a function of z, as z tends o 2
definite value, must be given.

fla) 1s said to have the limit b as x tends to a, when, any positive
number ¢ having been chosen, as small as we please, there1s a positive
number 1 such that | f(x) — b} <<e, for all values of x for which

O<|x~-al=y

*Hobson, loc. cit. 1 {8rd ed., 1927), 280, uses the term fucluation.
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In other words | f(¢) - 5| must be less than ¢ for all points in
the interval (a - %, @ +%) except the point a.

When this condition is satisfied, we employ the notation
fim f{z) =0, for the phrase the limit of f(x), as z tends to a, i3 b, and
Lol

we say that f(z) converges to b as « tends to a.
One advantage of this notation, as opposed to lim f(z)=b, is
T

that 1t brings out the fact that we say nothing about what happéhs
when  is egual to a. In the definition it will be observed that a
statement ig made about the behaviour of f(x) for all va,lué‘s of =
such that 0<|z~a| =5. The first of these 1nequaht1es ‘ehnserted
expressly to exclude x=a. N

Sometimes 2 tends to ¢ from the right-hand ogly i.e. ¥>>a}, or
from the left-hand only {(i.e. 2 <<a).

In these cases, instead of 0<|a—a| = n, W have O<(z—a)=
{right-hand} and 0<{a — &} = # (left hand):ln the definition.

The notation adopted for these righit*hand and left-hand limits

. i e A
The assertion that lim f{ x).a—:b"t'hus includes

Twid ".'

limfz)= lim fx) b.

T4 k{] i—a—

[t is convenient Q\uae fla+0) for hm flz) when this limit exists,
+0
and similarly f{ f 430) for lim f(x when this limit exists.
T

When f( )(é}las not a limit as x—q, it may happen that it diverges
to + o pqffo — o, in the sense in which these terms were used
in §1Q Or, more precisely, 1t may happen that if any positive
number A, however large, ts chosen, there corresponds to 4 a positive
?L?Mber 7 such that

N/ fxy> 4, when 0<|z—a|=4x.
In this ease we say that lim f{z)= + oo,

T—sid
Again, it may happen that if any negative number — A is chosen,
however large A may be, there corresponds to @t a positive number 5
such that f(zy< — A, when 0|z ~a|=x
In this case we say that lim f(x)= ~

&=+t

The modifications when f{z 4-0)= 4o are obvious.
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When lim f{z) does not exist, and when f{v) doos not diverge
F—rit

to +eo, or to —wo, as w-»2, it is sald to wsedlale as w-sa Tt
oscillates finitely it f(£) 1s bounded in'some neighbonrhood of that
point.* It oscillates ¢nfinitely 1f there 1s no neighlourhood of @ in
which f{x) is bounded. (Cf. §16.}

The modifications to be made in these defimtions when z--0 only
from the right, or only from the left, are obvious. Q)

26. Some General Theorems on Limits. §. The Lirit of a Sru}n
Iflim f{z)=a and hm glz)= 4, then lm [ f{o} ¢y} i—\p"{'

Leg 1;1? positive number e be (‘hn:m: a8 stuall i \w s please,
Then to e there correspond the positive numbery A,\ 7, such that
| () —al < le, when O<|e—aj.
|glz) — 8] <<%e, when O-<|x- ’al‘é e
Thus, if % is not greater than ??1 ot 1;2,~ O N

&

[ £) +9(2) — @~ B1=1 () -l +1g() B,
W, dli'eﬂthIiafy%(?'g AN when 0« |x— (ltH =y,
< g ~.‘ ’ when 0<fz =
Therefore lizn { {2 +g(z) = + B.

‘This result can be egberded to the sum of any number of
functions. The me}\oj a Sum is equal to the Sum of the Lumats.

IL The Limig Qf 4 Product, If himfiz)=a aend limg(2)=p,
then lim [ f{z)g@r)|=up. o o
g {\Y

Let (O fla)=a+gfa) and g(@)=f+y(a).
Thsn Im ¢z} =0 and hm y(x)=0.
\‘Alﬁso Jixlg(zy=af + Be(x) +m,u(x) + ().
. From Theorem I our result follows if lim [ ¢(z)p(x)]=

*f(x) is said to satisfy o certain condition in the neighbourkeod of w==8
when there is a positive number % such that the condition is satiafied when
O<|x—al Zh

Sometimse the ncagkbouﬂrood 13 meant to include the point r=o itself. In
this ease it is defined by |z -« ==

tThe cnrrespondmg t]?ll’-orerrl for functiona of the positive integer n, as A-—>2,

Is proved in the same way, and is useful in the argument of certain sections of
the previous chapter.
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Since ¢{z) tends to zero as x—¢ and {r) tends to zero as z—a,
a proof of this might appear unnecessary. But if a formal proof
is required, it could run as follows:
Given the arbitrary position number ¢, we have, as in (I},
[p(e}| << e, when O<C|z—al =1y,
z)| << e, when O<<[5—al =%,

Thus, if % is not greater than #, or 7, O\
[plep(a)] <e, W PR ETRR
Therefore lim [g:{a)p(z)]=0. N\ ¢

T N/

This result can be extended to any number of¢ fll!lCthllS The
Linitt of @ Product 1s equal to the Product of UK Limzts

T{I The Limit of a Quotient.
) If Tim f(z) = 5 0, then Llfif( —\k

&R

This follows easily on putting f(xl h(x) +a and examining the

LA Pression 1 " \y " _
T - Fadnborary . org. 1N
AN x) +a VOrR

25

(i) Jf lim f{z) = a, and: hm g(m) = R0, then lim

This follows from ££Iy and (1IT (3)).
This result can §Dviously be generalised as above.

IV. The L:mlt cf Function of a Function, lim f{¢(x)].
it

Lt p.\ 4 lim h{z)=b and ]im Slwy=£(b).

p F—tt

waw\‘:\ ' lim fip{a)] _f[ hm LIEIIR

X—rd

\\'\\e are given that hm f (u) =f(h).

"

{ \ " Therefore to the arblt-rary positive number ¢ there corresponds a positive
" number 4, such that

| fI{x)] - fib)| < ¢, when [hfa) = B] T2 e {1
Also we are given that im ¢{e) =
Tl
Therefore to this positive number 3, there correaponds a positive number
n such that |lx) —b] <my, When 0|z —al Z o i e (2)

Combining (1) and {2), to the arbitrary positive number ¢ there corresponds
4 positive number # such that
| FI{x)} —F (B} <& when O <|lz-a| =g
Thus lim fI()] = /(b)=f Dim $(2)}
T+ E—rd
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TeH, 17
EXAMPLES.
1. 1f = is a positive integer, lim 27—
r—0
2, If n is a negative integer, lim =%— +4ee; and linm " . - o or 4
Tz bl FEraT)
aceording a8 = is odd or even.
1f 2=0, then ¥ =1 and lim % =1.]
r—U 2\
3 hm (g +a @+ L ey rday) =a,. Ao
F—0 f'\..\
-1 o ”
4_ imawlﬂﬁm) = nless b 0. &)
»[] b+t by, e, ‘n ,\}‘
S
5. lim #™=a" if = is any positive or negative integer. O
E—ret . m\\
6. 1t Ple)=ae™ o™+ Lok, Y .
then lim FP{i) = Pla). A0 )
a- e ,’.\\
7. Let Plry=aa™ +axm 4. g a;,’lﬂc Fit,.
and L T R z‘zﬂ fEE
Then W - Ji Eﬁaul&faf'}@qg& n g

R

8. If lim f(x) cxists, it is the sa,mc as lim f{r+ a).
T

a—rli
9, If fix) qg(} for a -k <x<a+h,
d ?Nf’t’ i Y= 1,
an ‘ix( () =1, z-“f:;g() j

then N iz f.
10, i lim (?{'—,’,9, t-hen ltm | f{x)) =0, and converscly .
w—wit £ LT

s 4

11. I lﬁxkx,‘ffx)zl-%f'—(} then tim | f(z)] = Y-
T—a

The ﬂeo}verse does not hoid.

~Q‘2‘ ,Let Jix) be defined as follows:
i fley=xsin ljz, when 220
5 foy= 0
Then Ym fiz)=F{a) for all values of 4.

27. lim f(x). A precise definition of the meaning of the term
Ty [T

“the limit of f(z) when « tends to +0 (or to — o ) is also needed.

J(z) s said to have the limit b as @ tends to + x| if, any positive

number ¢ having been chosen, as small as we please, there is a positive
number X such that

o | fle) —bl<<e, when z =X,
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When this condition is satisfied, we write

lim flx}=b.
T+
A similar notation, Hm fiz}=b,

is izsed when f{z} has the limit b as 2 tends to ~ o¢, and the precise
definition of the term can be obtained by substituting ‘“a negative
number ~ X" gnd “r= - X" in the corresponding places 1m{he
akove

When it is clear that only positive values of » are in guestion, the mta.tmn

lim ftz) is used instead of lm fz). :'\
= E—w W
From the definition of the Iimit of f{x} as « tends to :|_ao gt fallows that
lim f{ri=h ¥4
T o0 o\ v
carries with it lim f ( ) b.
z—=+0
And, conversely, if hm f(:c}_K
then lim f(lj 5.
WWhL aullbrar\y org.in
Similarly we have lim f.(as) hm Ji- :
Tl > =0
The modifications in the g}bcfve deﬁmtlons when
(1) Iim Sflzl=+w or -,
' ""%
and (i) \\ llm flz)=+w o -o
- —a .

will be obvious, pn Jreferring to § 25.
And oscillagion, finite or infinite, as x tends to + o or to —co, is treated
as b(:fore,‘\'w :
PN Sl . . .
28,4 necessary and safficient condition for the existence of a
Iigiit\to f(x) as x tends to a. The general principle of convergence.*
o1 necessary and sufficient condition for the existence of a limal

“NMo f(z) as x tends to a is that, when any positive number ¢ has been

\:

chosen, as small as we please, there shall be a positive nunber v such
that | f{a") -z} <<e for all values of &', " for which
D<]e" —a| <|2’ —al =5
(iy The condition 48 necessary.
Let lim f{z)=5

F—iT
*Beo foolnote, p. 48. Another troatment of this guestion is given below in
§829. 2 and 290, 3.
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Let ¢ be a positive number, as small as we please.
Then to }e there corresponds a positive number » such that
| flz) - ] < }e, when O<Z[z —af- 2.
Now let ', " be any two valucs of x sa.tisfying
0<|&"—a|< |0’ —al &

Then | fle™) ~ fla 2] fle") - b] + lf =
< le + Ee
< €. ¢\
(il) The condition is sufficient. . QO
Let €1, €py  €gp eno ',,'(”:‘:
be a sequence of positive numbers such that o\
€nry1Se, and  lm e, =0,
n—X x'\\':
Let Ny Na My LG

be corresponding positive numbers suekifhit
| f(2") = fl@) | <ep, when O<|& ~a|<|v" a,| S ) A1)
\-.rww.dbraulibravtfyorg.ir(ﬂ_ 1 J
Then, since ¢, <e,, We can Qb;(riéusly assume tha.t Na"
Now take ¢; and the comsponding ;-

In the inequalities (1) pﬁt #'=a -+, and "=
Then we have '\\

0<| fl@) £fie +n,)l <ey, when O<|z—al<n,
Therefore ;‘\ ¢

G+?Izl“€1<f )<< f{a 4n,) +eg, when 0<|z—al <. --(2)

In Flg&“ f(x) lies within the interval 4, of length Ze,, with

centrevdt f(a +7,), when 0< [z —a|<n,.
O

P x
/ \

Frrg fatn) 7 Fart e
Fia. &.

ER/EFET

Now take ¢, and the corresponding #,, remerbering that ;=1
We have, as above,

fla+1g) ~ ea < f(@) < flo +15) +eg, when 0|z a) <9y .--(3)
Since 77, = 773, the interval for ¢ in (3) cannot extend beyond
the interval for & in (2), and f{a +1,) is in the open interval 4;.
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Therefore, in Fig. 6, f(z) now lies within the interval 4,, which
lies entirely within 4,, or lies within it and has with it a commeon
end-point.  An overlapping part of

{fla+n5) —ea, flatny) +egt
could be cut off, in virtue of (2).

A,
T \ /o
/' Az \\
"  —————— o
fle=n e, flatugl-es  fla+n,) flatn) flatn, e, e,
Fia. 6. ‘\
In this way we obtain a series of intervals
A’il, AQ, As, cer oy m’\.\:

each lyiug entively within the preceding, 0x dying within it and
having with it a common end-peint;, .@n.d, gince the length of
A, 75 2¢,, we have im A4, =0, for we a.ge given that lim ¢,=0.

H—00 fL—r3
If we denote the end-points off thcse mtervals by a,, a,, 24, ..
and 8,, B4, By .. , Where ‘;S'nggﬂﬂlémbmﬁmmgnﬁrom § 18 that
linf'ﬁt‘nz lim 3,.

Ji%o n—@
Denote this commonliniit by a.
We shall now showthat a is the limit of f(z) as z—a.
We can chooeley in the SEGUEeNCe e, €, €5, ... 50 that 2e,<e,
where e is any'given positive number.
Then we BisVe, as above in (2) and (3),
e @< f(@) < B, When 0<<|z—a] <,

O w=a =
~‘Ei_‘}erefore | flz)~al<f,—a,
"\ < Ze,
O < &, when 0<|z—a|<n,.
It follows that lim f(z}=

As a matter of fact, we have not obtained
| fiz) ~ a] <e, when O<|e—a| g,

in the above, but when 0 < |z —a| <7,.
However, we need only take » smaller than this #,, and we obtain the

inequalities nsed in our definition of a limit.

29. 1. In the previous section we have supposed that = tends to
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¢ from both sides. The slight modification in the cendition for
convergence when it tends fo @ from one side ouly can easily be
made.

Similarly, & necessary and sufficient condition for the existence
of w limit to f(x) as x tends to +oo, 15 that, if the positive number ¢
has been chosen, as small as we please, there shall be a  positive
number X such that

| flz"™) —fl")) <e, when &' =x" - X.
In the case of lim f(z), we have, in the same way, the conditiva

X — G £\

| flz") ~ flz')| <<e, when z"<2' ;0 - XL : hy

-

The conditions for the existence of a hrmt to fif} ns’z tends

to +o or to —a can, of course, be deduced frgm}i?]wse for the
exiztence of a limit as = tends to +0 or to — (.

Actually the argument given in the precedi}tg section is stmpler
when we deal with +e or —« ,* and the\ea% when the variable
tends to zero from the right or left @’ be deduced from these

1
two, by Substltutlug;&;ﬁ%?aGYMLﬁ@gtﬂ@ to a, we must substitute
T=a -+ 1- )

SN g

29. 2. The Upper and Loue( Lmnts of Indetermination of the Bounded
Function f(x}, when x—a¢ ¢ ‘.. }

As in §17. 2, there is }sme advantage to be obtaincd by nsing what are
called the upper and lou ey Limils of indetermination of the function at the point
considered, They ate ‘defined in much the same way as in that section.

Take a sequen@ Ty has My oo
£\

where ’\\ } WPy yy ... and ﬂl_iFr-r:Q =0
Let MJ. be the upper hound of f{x), when 0 <{xr - a| 7
bound, When 0 <!z ~a| = y,, and 5o on.

\”zsjrﬁllarlv let #,, m,, ... be the corresponding lower bounds.

Then M, = M,i: 1{, ... Zm,, and this monctonie sequence is bounded
below,

Therefore lim M, exists, and we denote it by A.

A=

© . and 3, ite upper

It is clear that any other sequence 1,°, gy eee

where W=y and lim g, =0
will give the same limit A. n

*Cf. Usgood, Lehrbuch der Funltionentheorie, 1 (4 Anfl., Leipzig, 1923), 33.
The general principle of convergence of § 15 can also be estabhshcd in this way.
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To the arbitrary positive number ¢, there corresponds a positive integer v,

such that AZ=M, < A+e when 2 70
T flzy =M, < Atre when 0<|x- a| = 1
Now take a positive number o < 7, and let 5, e
Then _ AZM =M,

And fla) > My -« for at least one value zy in B <] -] T

Therefore fiz)> A —¢ for at least one value xy in 0 jr—a| Za

1f we now take f§< |z~ and proeeed in the same way, we see that
Jlx) = A — ¢ for at least ono value @ ing<|x—w]= g \

It is thus clear that when 0 < ]z —a | = a, there are an infinite Dmecr of
points at which f{z) > A —e. , ( N\

This number A is called the upper limit of indetermination of fz), when
z—a, and we write A=lm flz). " N

T A

If ¢ is an arbitrary positive number, there i a neighb,@i{faood 0 |z —a| = .
such thal for every pownt of this neighbourhood f{r} < Ape; and in every neigh-
bourhood of a, however small, there is @ point {other fhah ) at which f(x} = A—e

"The lower lmit of indeiermination A of f (sp),’,\\vﬁen x—-a, is obtained in a
stilar way, and we write A= lim f{x). v

x—rit AN

I ¢ i3 an arbitrary positive nagmp {&E%‘éﬂ‘iﬂﬁ?@’%’}gﬁw 0‘< bx — o :j'".’s
auch that for every point of this neighbs rhood fix) = A - & and in every neigh-
Baurhod of @, however small, there {q’ﬁ point {other than a) al which fx) < At+e,

Tt is clear that Jimabf () = Lim f(z).

N4 I—i

These definitions may, aléo be extended to the case when we approach a from

the right-hand or tlg’\]:‘ett}-hand. In this way we have fim f(z) and lit f(z),

F ! z- 10

which are cou\;pniently written f{u + 0) and ffa-06), Similarly for lim 1)f )
-k —

and fim ¢ %Y, which are written f(a — 0} and f{z -0

o =it =

P ¢
29&.~ The following theorems are obtained at once (ef. § 17. 4).

W 77 i fo) exiais, then T f(z)=lim flz)=lim fiz).

2N\ Foit —2 Xt it

(i) Conversely, if Tim fix) =lim f(x), then lim f{2) exists and is equal o their
P —a o
et mon valie,

(iii} The general prineiple of convergence for lim f{x), when z—>a:

A necessary and sufficient condition for the existence of a limit o f{x) as % lends
to a is that, when any positive number € has been chosen,. as small as we please,
there shall be a positive number 7 such that | f(z") —fla’)| < ¢ for all values of
', 3 for whick 0 << 2% —a| < |2’ -a| Z .

Wkhen the upper and lower limits of indetermination are used the proof that
this is a sutficient condition for the convergence of ftx) as x—a is much shorter
and simpler than that given in § 28. See alzo § 17, 4 (iii).
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95 4. The Oscillation of a Bounded Function at a Point. Tn §24 we
have defined the oscilbaion of a fraekion fe o fedfers . We nw define the
nscillafion at n poind.

Let & be a point in the interval in which fla} s wiven, TS NPT Y SRR
sequence, where gy = s iy . and lintyg, 1 For any positive integer » let

o
M, and m, be the upper and lower homuls of fir) in the neighbourhood of
x=a, defined by |2 -] . the point o itsell now Teing point of tie
neighbourhood.
Then as in § 20, 2, we have
3)’1"',”._,‘ '_lfu... Tan. w\:\
T A RN .

Also lim M, and fim w,, exist and are independent of the partic u‘mL HL(]IIEDCE

H—r W= £

fes Has By .- chosen. +)

If these timits are. M end m vespectively, Heen (M iy (w’?x? the nseillation
of fiz) at the poind 0.* ’

It is clear that the ose 1Il&tmn at s the it of the u»?\]l‘] 1w o 1 he funetion
in the interval @ -y °. SRR RE CRTEESI &

Alao the ose 1}1'1tlon ut g is the ditfference bo{\sun {i) the creater of fla}
and hmf %) apd (ii} the smaller of f(r) and 1m1 JLr.

oP¥in
At a peint where f{ ‘f}‘”{s L%HE?HI%E‘SF?. Cy U‘-s'fqt"‘LT](m ix zero, aml at any other

point it is different Trom zero. ®
If the oscillation at x=misk tb,(,n m every neighbourhood o -5 R R
the oscillation of fla) is gr(.‘Lt{.r{h.\.m or equal to L,

30, Continuous F 6éons The function f{r) s said 1o he
continuous when x2gy, if f{z) has a limit as 2 tends o w, from
either side, and e;a(ch of these lmits 1s equal to flrg)-

Thus f(x) 19\c,ommumrs when w = xq, if, to the arbivary positive
nimber ""Q{LN correspaads @ pogitive vuwiber 3 suck that

SO St =gl <o when - o] 2.

W henf ) is defined in an interval (e, §), we shall say that #
&cc}ntmuoets wn the wnterval {a, b}, if <1 is continnous for ecery ietlice
of @ between o and b (a<az<b), and if fla+0) caists and is egnal
to f{a}, and f(b — 0) exvsts and is cqual to fib).

in such cases it is convenient to make a slight change b ouwr
definition of continuity at a point, and to qax that j’(;};} is qou-
tinuous st the end-points @ and & when these conditions are
satisfied.

it follows from the defmition of continuity that the sum or

*[t may be noted that Hobaen {foe. vid. 1 {Arded., 1927), 300) nses the term wrefdHA,
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product of any number of functions, which are continuous at a
point, is also continuous at that point. The same holds for the
quotient of two functions, continuous at a point, unless the deno-
minator vanishes at that point (¢f. §26). A continuous function
of a continuous function is also a eontinuous function (cf. §26
(IV)).

The polynomial

Plx)=a@* +a.2" 1+ +a, = +a, O
is continuous for all values of z. O\
The rational function N
| R(z)=P(z)/Q(z) Y
iz continuous in any interval which does not inciﬁde'values of z
making the polynomial @{z) zero. ~~\\

The functions sinz, cosz, tanz, e il vthe correspondmg
functions sin~kr, eos™'z, tan—l, ‘ele. apeleontinuous except, in
certain cases, at particular points. ™

e” is eontinuons everywhere; logJjs continuous for the interval
0, wwuf_d,lgrafuljbrary.org.in

31. 1. Properties of Continudits Functions,* We shall now prove
several important theoremig® on continuous functions, o which
reference will frequentliy“be made later. It will be seen that in
these proofs we rely{only on the definition of continuity and the
results ebtained 1h\}he previous pages.

TeEOREM Iy .Let flz) be continuous in the tnfervel (a, BT, and
Tet the positiye number ¢ be chosen, as small as we please. Then
Zhe 1?!!‘,{’3'{;%} (a, b) can always be broken up into a ﬁmte number of
partighyutervals, such that | f{n") —fla" < e, when 2" and & are any
twg\points ing the same partial interval.

et us suppose that this is not true. Then let e=§(a4-b).
\ "Xt least one of she intervals (@, ¢), (e, &) must be such that it is
impossible to break it up into a ﬁmtﬁ, number of partial infervals
which satisly the condition named in the theorem. Denote by
(@), &) this new intervat, which is half of (@, b}. Operating on

*This zection followa closely the treabment given by Goursat, foc. eif, 1 {4+ &d.,
1923), § 5.

1In these theorems the continuity of f{z) = supposed given in the closed
interval (m=Ix-19), as explained in § 30.

{de inor at the ends of the partial interval,
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(@, b;) in the same way as we have done with {a, ), and then
proceeding as before, we obtain an infimite st of intervals such
as we have met in the theorem of § I8, The sequence of end-
points @, @,, @, ... converges, and the sequence of end-points
b, by, by, ... also converges, the limit of each being the same, say o,
Also each of the intervals (&, b,) has the properts we huve aseribed
to the original interval {a, b). It is impossible to break it up intos
a finite number of partial intervals which satisfy the condition
named in the theorem. R\,

Let us suppoge that a does not coincide with « or L. Sinke the
function f(z) 18 continuous when 2=u, we know thaf’ “there is a
positive number % such that | flz) —fla)| =0 1¢ whid? | r -] =
Let us choose » so large that (b, - a,) is less tHad ;. Then the
interval (a,, b,) 1 contained entirely within (e 1, e« 7}, for we
know that @, =a =b,. Therefore, if 2’ and P are any two points
in the interval (a,, &,), it follows from €Heyabove thut

|f&) - fla)l <he and | FE") ~ fle] < de.

Bub | flo) — o) pstaidebrarfelisin fz”) - flo)

Thus we have [f{x')j—:'f(x")] <e,
and our hypothesis leads tg™a contradiction.

] There remains the possibility that o might coincide with either
% aor b The slight mq\dlﬁc&tlon required in the above argument
| is obvious,

Hence the ass.umptlon that the theorem is untrue leads in every
case to a confrddiction, and its truth is established.

"\NW

Corolawy 1. Let a, ,, 25, ... ,_4, b be a mode of subdivigion
| of (a8} into partial intervals satisfying the couditions of
{ Theorem I.

! \'\Then
R Lf(z) | ={f(a) | +1 f(z) - fo)]
= <| fla) | + € when 0<<(z~a) = (z, —a)
Therefore

| fledi<|fla) |+ e

In the same way
[f(@) [ =G| +1 flx) - flzg)]
<| flzy)] + € when O<(z — ;) = {2y ~ 2q)
<[fla) | + 2¢, when 0<(z—2,} = (2, — 2,).
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Therefore

| fleal < fla) | + Ze.

Proceeding in the same way for each successive partial interval

we obtain from the n'" inferval
[f(-’b)[ <if(a')1 +?‘b€, When 0<($ - xﬂ—]} = (b - xn—l)'
Thus we see that in the whole interval (a, &)
[ f(@)] <[ f(a)] +ne.

it follows that a function whickh is continuous in ¢ given mlvm'al

is hounded in that interval. O

Q!

CoroLLARY II.  Let us suppose the interval (a~ ‘)"Hivided up
into #» partial intervals (e, z,), (z, ), (:e:,,\l, , such that
| fle") - f{&")| << Le for any two points in the same partial interval,
Let :*; be a positive number smaller than thelleast of the numbers
(£~ a), (@y~14), . (B~2x,4). Now take any two points z’' and
z” in the interval (g, b), such thaf\}e’~a"{=%. If these two

peints belong to the same partlal interval, we have
brauhjbl ary.org.in

I s
On the other hand, if thej™ do not beleng to the same partial
interval, they must liedh two consecutive partial intervals. In
this case it is clear th“at\|f(x —flz")| <de+ie=e.

Hence, the pomh@o number ¢ having been chosen, as small as we
please, there vs(d positive number 3 suck that | f(a’) —flz")| <e,
when &', @" apelany two values of @ in the interval {a, b) for which
lz" —x"| _'-: o

Woesgtarted with the assumption that f{z) was continuous in
(a, B NIt follows from this assumption that if % is any point in
’t-,f{i‘s”’intervaf, and ¢ any arbitrary positive number, then there is

\”\a, positive number # stch that
[ flz"y - fx)|< e, When |2'—z|Z 9

To begin with, we have no justification for supposing that the
same » could do for all values of ¥ in the interval.  But the
theorem proved in this corollary cstablishes that this is the case.
This result is nsually expressed by saying that fix) is wundformiy
condthruous in the interval (g, b).

We have thus shown that a function which is continuons in an
interval is also uniformly continuous in the interval,
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TueoreM 11 If fa) und fib) are wnequal wul fl.c} is continuous
in the tnterval {a, b), as x pusses from a to b, fla) lakes at least onee
every value between fla} and f(b).

First, let us suppose that f{u) and f{&) have ditlovent signs,
e.g. flay<0 and fib)=0. We shall show thut foc ab least one
value of z between @ and b, f{x)=-0.

From the continuity of f{x), we see that it iz ucgative in they
neighbourhood of & and positive in the neighbouriwod of b Con?
sider the set of values of @ between « und 6 which makes\i{3)
positive. Let 2 be the Jower bound of this ;Lg_r_;;;'ugat;efs.\'.i‘hen
a< A<b. From the definition of the lower 1mnmU‘{.gj)(i.’:r"megative

or zero in e =x< A But lim f{x) exists and iv\s{f_{’ual o f(A).
oA —10 I\

Therefore f( 4} is also negative or zero.  But f{ 4) sdaitiot be negative.
For if f{A)= -, m being a positive nm,r}%v}, then there s s
positive number 7 such that S\

| flxy —f{A)]<m, wh’t?;f }-J.-;.F Al g,

since f(x) is contig}}\%%d‘g}lg@ifgﬁlﬂgoﬁghﬁ function f{x} would then
be negative for the values of a:‘iii,‘(a,_ b) between 1 and Ay, and 4
would not be the lower bound of the above aggregate. We must
therefore have f{2)=0. ~\

3

Now let N be any’\nﬁmber between f(z) and f(b), which may
be of the same o, difierent signs. The continuous function
plxy=flz}- N .halé"i)pposite signs when z=a and »=b. By the
case we haveyJust discussed, ¢(x) vanishes for at least one value
of » betwgé“ﬁ.’a and b, 7.e. In the open interval (a, b).

Thus{ont theorem is established.

Agéiﬁ, if f(z) is continuous in (g, b}, we kuow [rom Corollary 1
- Above that it is bounded in that interval. 1n the noxt theorem
' \’m' show that it attains these bounds.

Treorem 1. If f(x) is conitnuous in the tnierval (o, b), and
M, m are its upper and lower bounds, then f(z) takes the value M
and the value m at least once in the interval.

We shall show first that f(z)=M at least onee in the interval.

Let e=}(a+5); the upper bound of f(x) is equal to M, for at
least one of the intervals {«, c}, (¢, b). Replacing (g, b) by this
interval we bisect i, and proceed as before. In this way, as n
Theorem 1, we obtaln an infinite ret of intervals (e B). @+, U1
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{ttp, bs), ... tending to zero in the limit, each lying entirely within
the preceding, or lying within it and having with it a common end-
point, the upper bound of f(x) in each being M.

Let A be the common limit of the sequences a, a4, a4, ... and
b, by, by, ... . We shall show that f{1)=M.

For suppose f(1) =M ~ k, wheze k>0, Bince f{x) is continuous
at &= %, there is a positive number » such that

[f(x) - f{d)| << ik, when |z— 3| :Z9.

Thus fl#)<M - th, when fz— A] Zn. «I\

Now take n so large that (5, - a,) will be less ths m 1. The
intezval (a,, b,) will be contained wholly within{(M 1, A+%).
The upper bound of f{z) in the interval {a,, QQG&!O‘Jld then be
different from M, contrary to our hypothesig &)

Combining this theorem with the prxedmg we obtain the
following additional result: '\,,

Turorem 1V.  If f{z) ts contenuoud 2h the interval (a, b), and M,
e are s upper and lower bounds, theh, it takes at least once in this
interval the values M, m, and ( everg S B 8 e .

Also, since the escillation O’f‘& Tunetion in an interval was defined
as the difference between s upper and lower bounds (cf. §24),
and since the functiofi’\atteins its bounds at least once in the
interval, we can state.Theorem I afresh as follows:

If flw) vs coﬁtm\ms in the interval (o, b), then we can divide {a, )
wnlo @ ﬁ-n-z-te nagnber of partiol intervals
p O (@, &), (%1 Fa), oo (Fayy B),

in each{@f which the oscillation of f( x} 1s less than any given positive

namdey*

’And a similar change ean be made in the statement of the
-~ property known as uniform continuity.

31. 2. The Heine-Borel Theorem. Lel an interval (a, b) end an infinile
set A of intervals, all in {a, B), Be given such that every poind x of e =z = bisan
interior point of ai least one of the intervals of A, (The ends a and b being
regarded as interior tn an interval of the set, when o is the left-hand end of un
interval, and b the right-hand end of unother interval.)

Then a seb consisting of a finite number of the intervals of A has the sxme

Q.

*The argument of Them\,m i, adapted to this case, leads to the theorem : If the
oscillation of every point of 6. x 25 b s less than a giv » number &, then the interval ean
be divided up into o finite number of partial tnlervals in each of which the oscillation
iz less than k.
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properly ; nawmely, every point of the elosed interval (i, ) i an interior poing of
ai feast one of the infervals of thiv finite sel (with the st convention as to the
ends a and ).

Let us suppose that this iz not true.  Then let o 41 - 4),

At least one of the closed intervals {2, ¢} ined (¢, A} ruust be sech that all ita
points are not intexior points of at least one intervicl of o hote sot of intervals
of the get A. ‘

Denote by {a;, b;) this new interval, which i half of (v, L) .

Operating on (4, ;) a5 we have done on {v, 4], and {hen proceeding e
hefore, we abtain an infinite set of closed intervals (r, b1 (1, b)) {ganbad >
such that their ends a, a;, 2,, ... form a bounded monctimie :mz-trudiug’séqﬁénce
for from and after some value of n are all identieal}, and ther cnds‘i)? By By yees
{orm a bounded monotonic descending sequence {or from wid afidysome valve
of n are all identical). K¢

Thus Yim e, and lim &, exist, and they are vzl .*:Im't:""k:;--'- th, 2!;1

Wil N—+0

{h--al .

Suppose that lim a,=q, different from o and b O

T Y

Then a ig an interior point of one of the integ\t\il.-ls of A sy {0/, 87 And by
{aking » large enough, we can bring u, add g, inside (", ). Then all the
points of this interval (a,, b,) are interior peints of one of the infervals of 4,
contrary to our hypothesis, 1. a8 n

A similar arglmenvgpp 1:35%(131 E}{g li.gsgrf i:(:n « voincides with ¢ or &

Thus cur theorem is proved. 03 )

Special cases of the Heine-Bore! Theorem are the first theorem of § 81. 1 and
the theorem stated in the foathote on p. 71

It can be at once extended to the case of a rectangular domain instead of
the linear interval ; ,Ektd is equally useful in dealing with the properties of
functions of two yarigbles (Cf. § 37}, Indecd the proof is independent of the
number of di:nen%siohs. And it finds s place also in the general theory of set8
of points.* /5N

The title"Heine-Borel Theorem is 80 generally used by Engiish writers that
it h&%\ 1"adopted in the text, But German and French raathematicians
nowygeler to it as Borel's Theorem, and there is no doabt that this is the hetiter
mx;axijie. The theorem (for the case of » countably infinite set of intervals) was
fitét enunciated and proved by Borel, |[Thése, Paris, 1804 ; Annales Sci. de

T Ecole Nermale (3), 12 (1895}, 51 : Legons sur la théorie des fonclions { Paris,

189811 Because of the simitarity of Rorel's proof and that by means of which

Heine f established the uniformity of the continuity of a function, given a8

continuous in a closed interval, it became enstoraary to call it the Heine-Borel

Theorem. But it may well be the case that the theorem is contained im-

plicitly in similar demonstrations by suthors previcus o Heine. And, 38

lehesgue remarks, the theorem is not one of thase of which the demonstration

* Cf. Hobson, Ioc. cit. 1 (3rd ed., 1927), § T3,
t Journal fiir Math., 74 (1872), 188,
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offers great difficulties,* The merit lay in perceiving it, enunciating it, and
divining s interest, not in demonstrating it. He refers to it always as
FKorel's Theorem, and regards the other title as unsuitable,

32, Continuity in an Infinite Interval. Some of the results of the fast
seetion can be extended to the case when f{z) is continuous in x = a, where

@ iz gome definite positive number, and lim f{z) exiats,
L

Tiet w=afw. When = ¢, we have f<u=1.
With the values of w in 0 # =1, associate the values of fiz) at the cotre:

spording points in 2= e, and to u={ assign lim f{z).
T 2 \‘,\

%Wothus obtain a funcetion of #, which is continuous in the closed ingerval {0, 1).

Therefore it is hounded in this interval, and attains its bounds, M{m. Also
it takes at least once every value between M and m, as u*paésc& over the
interval (1), 1).

Thus we may say that f{z) is bounded in the ranget gw}t by £ = « and the
new “point” x =, at which f(z) is given the value llm Fx).

Aleo f{x) takes at least once in this range its u‘ﬁmr and lower bounds, and
every value botween these bounds. o\

X 3

= 15 éon’tinuoua in {0, o). It does not

@
v elb i . i ,
attamn iis upper honnd—umty—wh&l xlaﬁmﬁﬁl PR this value when

x= =, as defined above. N

™

33. Discontinuons Fumetions. When f(z) is defined for
@, and the neighhedthood of zy (eg. 0<|z | =4), and
Flg+0)=f(z, - 0)&f(r;), then f(z) is continuous at z,

On the other/hand, when f(z) is defined for the neighbourhood
of 7, and it @ay be also for z,, while f(z) is not continuous at
Zg, s ng»k{u:zil to say that f{z) is discontinuous at Ty, and to call z,
& potut Of\ discontinuity of flx).

PQ& of discontinuity may be classified as follows:

' '\’;i*’;f(% +0) and flzy~0) may exist and be equal. 1f their
\”\pﬂmmon value is dlﬂererxt.fromj“(:rq), or if f{z} is not defined for z,,
then we have a point of discontinuity there.

Ex. Fla}=(x —xo) sin 1f(x - x;), when 27

Here f(x, + 0} =f{z, ~0)=0, and if wa give f(x], any value other than zero,
or if we leave fix,) undefined, z, is a point of diseontinuity of f{x).

For example, the function

*TiL o review of W, H. and G, O, Young's ¥ Theory of Sets of Pointa ™ in the
Bull. des seiences math. {2) 31 (1907), 134.

1t is convenient to speak of this range as the interval (a, =), and to write
Jio ) for im fiz).
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IL f(zo +0) and f{zg—0) may exist and be unequal. Then zisa
point of discontinuity of f{z), whether f(y) is defined or not.

Ex. f{x}tl l o when o g

—gliie—1

Here flzy+ =0 and  fry,-0p =1,

In both these cases fiz) 1s sald to have an ordinary or simple
discontinuity at x, And the same term iz applied when the
point z, is an end-point of the interval in which f{x) is given, and

Slzg +0), or flzg—0), exists and is different frone fin,), 1f f{m}qs
defined for z,.

\‘

I11. f{z} may have the Hmit +o0, or — >, as » '\'io?()n either
side, and 1t may oscillate on one auk or the otheg UTake in this
section the cases in which there is no oscillatinfn) These may be

arranged as follows: Y,
(5) g +0) =flzg ~ 0) = + 0 {or — g p K"
Ex. Fley=1jtx -x)%, whetl\F .«
(i) f(20+0) = g0, fauiimepdihiin - 0) = - = (or =),

Ex. flzy=1j[x —-;g;},”\vhen . Ey
(i) flmg+0)= +oo (or —0N or flzy—0)= 1% (or -0}
[lay~0) exists \ | flag, +4-0) exists '

Ex. *In’(:: -2, when « “‘-Tnl

'S‘z) —x-x, when x.0x, 0

In these casexwe’ say that the point zy is an infinity of flxh
and the samg §&rm is used when z is an end- pomt of the interval
in which fiz)as given, and f(x, +0}, or flz,— 0), s +o or —©.

It 1s 1%1»1&1 to say that f(z) becomes mﬁmte at a point i, of the
kind given in (i); and that f(zg)= + oo (or —ec). But this must be
;[:ega‘rded as simply a short way of expressing the fact that f(2)

Sdiverges to +% (or to —x ) as z—z,.

It will be noticed that tan # has an infinity at L, but that

tan }+ is not defined. On the other hand,

tan ((w~0)=+e and tan{Irx +M~ .

1V. When f(z) oscillates at 2, on one side or the other, g is said
to be a point of oscillatory discontinwity. The oscillation is finate
when f{x) is bounded in some neighhonrhood of z,; it is infinie

when there is no ncl‘ghbourhood of x, in which f{z) 18 bounded
(cf. § 25).
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Ix, (i) flz)=sin 1j{c ~ ), when z 1.
(il) flzy=1{(x - zy) sin 1 [{x — &), when z 7z,

In hoth these examples z, is 8 point of oseillatory discontinuity.
The first oscillates finttely at 2y, the second pacillates infinitely.
The same remark would apply if the function had been given only
for one side of x,.

The ¢nfinities defined in (ITT) and the points at which f(x) oscillates
tnfiiitely are said to be potnts-of infinite discontinuity. N
34. Monotonic Functions., The function f(x), given in the, f?ﬁe?ml

(¢, ), 45 said to be monotonic tn that interval if O
etther (1) fia') = flx"), when ¢ =2 <" i»bﬁ
or (1) fiz') = f(&"), when a-;'j;z:'<;5“;\;_'-\b.

In the first case, the function never det{eases a8 # INCreases

and it is sald to be monotonic increasing/in the second casc, it
never increases a5 # increases, and igNS“szid to be monotonic de-

S
N

fredsing. . \J

The monotonic character of ‘tHEPIALtBrAmaranl at the end-
points of the interval, and in..thj’s case 1t 18 sald to be moncfonic
en the open interval. N\

The propertics of monetonic functions are very similar to those
of monotonic sequencds,ytreated in § 17.1, and they may be estab-
lished in prec-iscly“b’he\s;’.tmc way:

{1y If f(x) ssrmonotonic increusing when x =2 X, and f(z) is less
than some jj-{e:d\ number A when = X, then lim f(z) exists and s
less than o equal to A. ok

(1) &R () 45 monotonic increasing when « = X, and f(z) is grenter
thademe fized number A when x = X, then lim f() exists and s

o"g\f'a?we-r than or equal to 4. A

(i} I7 f{x) 7s monotonic increasing (n an open interval (e, b),
and flx) is greater than some fized number A in that open inlerval,
then fa +0) exists and is greater than or equal to 4.

(iv) If flz) is monotonic increasing in an open vnterval (a, b),
and fa) is less than somne fized number 4 in thet open inlerval, then
J(b-©) ewists and is less than or equal to A.

*The fuotuote, p. 42, also applies here.
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These resultts can be readily adapted to the case of monotonie
decreasing functions, and it follows at once from {i11) and (iv) thag
of flz) 4s bounded and monotonic in axn open (nlerval, i can only have
ordinary disconttnuities in thal indercal, or af it mr’\

It may be worth observing that if f(») Ix monotouic in a closed
interval, the same result follows, but that if wu are only given that
1t is monotonic in an open interval, and not tobi that it s bounded\
the functlon may have an infinity at either end.

E.g. flzy=1/x is monotonic in the open interval (0 ]) but\not
bounded. {

At first one might be inclined to think that runclmn which
is bounded and monctonic in an interval can h.wh wily o finite
number of points of discontinuity in that inte u:i]‘

The following example shows that this is nd*the case:

Let f(#):=1, when } < .z.\‘\},'
let flz)=41, when ; NN~ L

. "
and, in general, www.dbraulibrapy.org.in

let f(:r):;ﬂ, when 7“1#1&;,

1
g
(n being any positive integer),
Also let f(0)=0. _¢\M
Then f(z) is men6gonic in the interval {0, 1).
This function Mas an infinite number of points of discontinuity,

N. ¢ . e
namely at z ,\21‘ {» being any positive integer).

Obvi u*ﬁ‘y there can only be a finite number of points of dis-
contmu\ty at which the jump would be greater than or equal to E,

hgre % is any fixed positive number, if the funetion is monotonic
and bounded) in an interval *
L

85, Inverse Functions. Let the function f{x), defined in the interval (e, B,
‘be continuous and monctonic in the sfricler senset in (a, b).

For example, let y=jf(x) be continuous and continually increase from A
t0 I as x passes from @ to b.

Then to every value of y in (4, B) there corresponds one and only one
value of z in {&, b). [§31. |, Theorem IL.]

*It follows that if there are an infinite number of points » discontinuity. ihis
set of points is countably infinite.

1Cf. footnote, p. 75.
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This value of # is a function of y—say ¢(y}—which is itself vontinually
incteasing in the interval (4, B).

The function ${y) is valled the inverse of the function f{x).

We shall now show that ¢y} is o continuous function of y in the interval in
which it iz defined,

¥or let y, be any number between A and B, and w, the corresponding
value of 2. Also let ¢ be an arbitrary positive number sueh that z, —¢ and
¥y ke lie in (e, &) (Fig. 7).

Let 5 — 7, and gy -+ 75 be the corresponding values of ¢. QO

Then, if the positive number » is less than the smaller of 4, and 7;@, it is
clear that

|z —2y| <6, when |y—wy,| =0 N
Therefore {bly) — Dl <€, when |jy—y| =, A s
Thus Ply) is continuous at g, '“.( N
. A~
J’A’F'ﬂ:l‘“"“"“""__"_‘_"""‘ :
Hap-rmmm e e e 1
e ——mm = oo m - g J’ :
J :
1 1
A T‘a‘uhhrary org.in!
.:“3 |I X 1
‘. N I
! ! ' ' !
1 ~ 4 i . f ]
W\ | ' ' X
73 ;n} 1 t ‘I T
'\ o '
N 1 L] L} L} i
£ n [ L 1 x
? » e E £, Xghe &
 \udf Fre. 7

A similgur\xp}mf applies te the end-peints A and B, and it is obvious that’
the sumahrgument applies to a function which is monotonie in the siricter
seme’ and' decreasing.

h; Munctions sin L, eos—lx etc., thus arise as the inverses of the funections
"Gil’l A and cos x, where 0 = 2 =% i, :md 80 OIL
\ In the first place these appear as functions of g, namely sin~ly, where
07y =1, costy, where 0=y =1, ete. The symbol y is then replaced by
the usual symbol x for the independent variable.

In the same way log x appears as the inverse of the function e®, .

There is a simple rule for obtaining the graph of the inverse function f~{(r)
when the graph of f{x} ia known. f—'(x) is the image of f{x} in the line y =z,
The proof of this may be left to the reader.

The following theorem may be eampared with that of § 26 (IV):

Let f{u) be a continuous funciion, monotonic in the stricter sense, and le

tim fT(a]=f0).
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Then B Gz} ewists and is equal {0 b.

r—=

A strict proof of this result may he abtained, celying on the property proved
above, that the inverse of the function, £} is a continuous functivn.

The theorem is almost intuitive, if we are permitted to use the graph of Flu)
The reader is familiar with its application in finding cortain hmiting values,
where logarithms are taken. In these cases it is shown that Lim Jog w—=logh,
and ib is inferred that Yim w=5h*

36. 1.} Lot the bounded function flz), given in the interval (s, B), be suehd
that this interval can he divided np into a finite number of open partial
¥ intervals, in each of &hich

fixy is monot-onj::’;,\or, in

aceordance \\-’1t<h~ft.he more
usual but les@lexarit expres-
sion, lek ﬁh}x}ﬁnctiou have
only & #hite number  of
maxinh and minima in the
intérral.
‘5: \Suppose that the poinbs
AN @y, Ey divide thisin-
N — dhvaul 1brj,a{' §,0 rg. jfervalintothe openinter vals

1
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1

1
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1
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1
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1
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1
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L=

. N\ Y . inwhigh f(x} is monotonic.
R xgi’ ) ffa s T Then we know that ftx) can

. . ouly have ordinary discon-
tinuities, which can nccyrat phe points 4, &y, %g ..o Ty g, B, and also at any
number of points within‘bh}) partial intervals. (§34.)

1. Let us take first £he case where f{x) is continuons at @, 2y, ... Tp3s & and

alternately mondfosiié increasing and decreasing. To make matters clearer,
we shall a.ssugm\'f.lfat there are only three of these points of scetion. namely
Ay, By, Ty, [z} being monotonie incrensing in the first interval (e, &), devreasing
in t-hel Sfi@d {ix;, =5), and so on (Fig. 8).

It 13’:;obvious that the intorvals may in this casc be regurded as closed,
thednenctonic character of f{z} extending to the ends of each.

N

\ \:Consi.der the functions Fix), () given by the following schemo

Fix) ix) T

-~

T

flo) | fo - Sk
Fly) - Fahr fz) | flon) —flag)

)~ 1) | flag -Tlaa 11wy ~Fio) | =

;(]53‘{ Hobson, Plane Trigonometry (Tth ed., 1028), e 130
or an alternative treatment of the subject matter of this scotion, see § 36, 2.
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Tt is clear that Fx) and (=) are monotonic incregsing in the closed interval
fa, 01, and that i) = Flx) - () in (g, b).
I Fia) te decressing in the first partial interval, we start with
Flx)=Fla), Gfx)=f{n) -f(z), when aZz=a,
and proceed as before, d.e. we begin with the second line of the above diagram.
and sabstitute a for @, ste.

Also, since the function f{z) is bounded in {&, #), by adding soms numper
t6 both Fia} and 3{z), we can reake both these functions positive if, indhe
original discussion, one or both were negative,

It is clear that the process eutlined above applies equally well 0 %\Iﬁrtml
intervals. N

We have thus shown that when the bownded function f(x), given in <the interval
{a, 1), 15 swch that this interval con be divided up inlo & ﬁmtemum er of partial
intervals, f{z) being alternately smonotonic increasing and W?wmmc decreasing
in these intervals, amd confinuwous al their ends, then e tgh express f{x) as the

difference of two (bonnded) functions, whick are po‘smK gnd monolonic increasing
i the Inferval (z, b).

TI. There remains the case when some or aH G}Yhe points &, x;, %5, ... @y_y, b
are points of discontinuity of f{x), and tha j)rovmo that the funotlon is alter-
nately monotonic mereasing and d@(\g;qgsg}h MFBPRP@. or

We ¢an obiain from f{z) a new function ¢f), with t%? same monotonie
propertics a8 f{x) in the open partm_f intervals {n, &), (2, @), .+- (g1, B), but
continuons at their ends, .

The provess is obvious T b Wig. #. We need only keep the first part of
the corve fixed, move tlm “Sebond up or down till its end-point (k) Fla +0))

oA
:’.\N:“' :I’\.

VY

&"\'
h
\:

coincides with {, fiz, — 0)), then proceed to the third curve and move it up
or down to the new position of the second, and so on.
If the values of f{z) at u, #,, g, -+ Tpooq, O &T€ NOL the same a3

fla+®), fle,+0) or fla -0) ete,

We must treat these points separately.
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In this wa}, bub arithmetically,* we obtain the tunction ¢(z) defined ag
follows: . .

In o =z <z, ¢)=f(z),supposing for clearness f{a}=fi« -0l

Af 7, $l)=flE+ay

In o<z <z, $E=fci+ataq

Ab T v fla)=f{zh+a Tyt o,

And s0 on, : . .
ay, g, @y, - heing definite numbers depending on flz, 10) f (xljf ke, . /

We can now apply the theorem proved above te the fonutinn iz} z\md
wiite () = Blz) — ¥(2) in {a, b), R\,
Bz} and ¥(z) being positive and monotonic increasing in this impryih,

It follows that: 3

In o<, flay =%z} - Fix). ‘O
A oz, f@=%@-PEw-a 'S)
In = <z<z, fxy=3z) -{x) ~ay — a5

And so on. N

If any of the terms @y, a,, ... are negative welput them with plr): the

positive terms we leave with W(z). Thus findlly#e obtain, as befors, that
F@=Flz)-6lz)inyd, b),

where F{z) and G{x} mvpm%idbmﬂliﬁﬁﬂsmmﬁgreasing in this interval.

We have thus established the im]goftﬁt. theorem: .

If the bounded- Junction f(x), given'in the interval {a, b), is such that thes
interval can be divided up into & fouite number of open purtial intervals, in each
of which f(3) is monotondc, themwae oan express f(x} as the difference of fwo (bounded)
Junctions, which are posa%i{ and monolonic tncreasing in the inferval (a, B).

Also # will be seeffrom the above discussion that the discontirmities of
F{z) and Gz}, whighcan, of course, ouly be ordinary discontinuitics, can
ocour only at the\poihts.-where /() is discontimious,

It should, /pethaps, also be added that, while the monotonic propertics

agcribed to"j‘i‘x} allow it to have only ordinery discontinuities, the number
of poip\ms\gi discontinuity may be infinite (§ 34).

36,2, Funetions of Bounded Variation.t 'The functions discussed in § 36. L
~avea apecial cage of the class of functions known as functions of bounded wiria-
fion introduced inte Analysis by Jordan,t and used by him in the freatment

of Fourier's Series. The principal properties of such functions are obtained
in this section, which may veplace §36. 1.

*1t will be noticed that in the proof the curves and diagrams are used simply
8 llustrations.

1T}§en? ig A very co_mplete freatment of functions of bounded varistion (fonctions
b variation bornée) in Lehesgue’s Lepons sur Pinlegration, (2¢ éd., Ttaris, 1928),
gl; IV, Beo also de la Vallée Poussin's Cours & Analyse 2 (40 éd., 1922), Ch, 11,

1CL. Jordan, Cours & Analyse, 1 (2° éd., Pazis, 1893), b4,
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Defindtion.  Let f(x} be bounded in (2, b) and let a=x,, Ty Loy oer Ty, Xy =h,
be e mode of division of this interval.  Lef g, 31, ... ey, tty, be the values of [ix)

at theae points.
u—1

Then 2rea =y =fO) ~f@) =p -,

where p is the sum of the positive differences, and —n the sum of the negative
differences.

The sum N}_:Iiy,,ﬂ -yt is denoted by t, and we have A

Il

w—=1
t=Zlyria —grl=ptn. A\
{ \

T every mode of dinision of (n, b) info such partiol intervals, theretorrespond
suma t, p and n.

iFhen the sums b, eorresponding lo all poseible modes of dw;kwn of {a, b), are
fiownded and thefr upper bound iz T, we say that T is the olaf variation of fiz)
ir (a, by, and that f{x) is of bounded variation in thig el

Bince 2p=t+f(b) - fla), \:
and 2n=i— f(b)-i—f(a),
it is clear that, if f{x} is of bounded vanatz\l the sums p and # are also
boundoed.

If thoie upper bounds are P and %ﬂd&)h&ﬂh brary.org.in
2P=F/1b) -f(a),

and 2N —f(B) +f (),
Pand - N are sometimes odlled the positive variation and the negative variy-
#Hon in the given intervale\

Again t is clear that Qbounded monotonic function is of bounded variation.
And that, if fleyisad b Xunded variation in (g, b), it is also of bounded variation
in (e, §} where 5 —ma < =D, Further f{z} does not ceasc to be of bounded
variation, if iga x\aluc is altered at a finite number of points.

These facf\follow at once from the definition just given, and we proceed
now towedtablish further properties of such functions.

T. '}‘}"ﬁ"[m) is of bounded variation in (a, c) and {6, b}, where @ <c <h, it iz of
bowhifed variation in (a, b).
w\: ,?.Tak(: any mode of division of (a, b}, say, 8=z, &y, ¥4, ... Tp_y, ¥, =0,

\ 7 If one of these pointe coincides with ¢, then its sum £ satisfies 1 ={; + i,
where t; and #, are the sums for this mode of division of (a, ¢) and (e, d) respec-
tively.

If ¢ lics between two points x, and %,.,, since
|otray = ¥el Z |gran —SIE+ 1 (€Y~ 3,
itis clear that £ = t; + {5, with the same notation as before.
But if Py and 'y are the total varistions in (g, ¢] and {¢, b} Tespectively,
t,= T, and ty 5T,
Therefore t=7,+ T,
Thus we have shown that f{z) is of bounded variation in (a, ).
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IL Let ¢ be a point between a, b and fiz) be of bownded variofiva in 4, b,
T, T, and Ty being its total variations in (a, b), (a, ¢} and {¢, b},

Then T=T,+T,.

We have geen that if /{z} is of bounded variation in {a, b}, il isalso of Lounded
variation in (¢, ¢} and (¢, b}, and the eoncluding line of the argument of
Theorem 1 shows that _ .

P T i (i}

Now take the usual arbitrary positive number e.

There is a mode of division of (&, ¢} and also of (£, b), for which the sums

t, and t, satisfy <y, et . \ \)
Thus T1+Tz—-e{t ity )
But these modes of division of {a, ¢} and (c b} form & mode of dumon of
{e, B). "."\‘
Therefare i+t =T 4
Thus ' (RS USRS R SRR (i)
It follows from the inequalities (i) and (if) that \
=7 +T, ¢

10T, If flz) is bounded tn {a, b), and this) interval can be broken up into o
finite number of partial inievoudsdfopan Iéb’c"wsw?]iﬁ 18hich the function is mono-
tonic, then f{z) ie of bounded variaiion m [, D).

This follows from Theorem I,“smce in all these intervals f{z) is of bounded
variation.*

I \
3

2

*Jt might be thought thata function with an infinite number of Lurhing points
in a finite interval coyld not be of ‘bounded variation in thal interval. But the
following example Sh'uws Lhat this is not the case.

Let flo) =2t s;Q:—%, when z > 0, and f(()
o

. LN\Y .
Itis ea,sy\~t.g show that there is one turning point and only one in
\ (et )
\ (rim?  (uoy?
Mavhe}e i any positive integer.

\ JTf the interval extends to the origin, the number of turning points iz infinite.
But the absolute value of the maximum or minimum in the interval

1 1 s 1
(H_H—’—_,‘, ——5) is less than - -,
{n+1ImE  {ay (nn)?
T follows that the tofal variation in any interval, {0, a), where & > D, is less than
: 2 o 1
SR

On the other hand the functions

f(x)_sm whenx‘>0] and fl@)=xsin - Whenr>01
floy=0 fiy=0

are not of hounded variation in euch an interval.
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IV, Tffin) is of bounded variation in (g, b), it i3 the difference of two posgitive,
monolowic increasing functions; and the difference of two boundel monotowic
intreasing funciions is a function of bounded variation.

(i) Tirst, let P{x} and — N{z) be the positive and negative variations for the
interval {z, #), wherc @ <lx < b,
Then, by the definition of P and N, we have
Sfix)=fla)=P{z) - N(=}.

Also P{z) and N{z} are positive and monotonic increasing funetions of wan

Thus J@ =[P} +f{a) + | f(a}]] - (¥ () + [Fla)], .
which estahblishes the first part of the theorem. ¢\
A\ e
(i) Next Jot Jxy=P(x) — G (=}, y
where Fiz) and G{x) src bounded, monotonic increasing funations in (a, b),
Take any mode of division of the intersal m\

=g ¥y, Tgs rer Tyt Z, =0

Thon  f(r 0 (A =[F (Bpas) —F (o))~ [Gede) ~ Gl
md S o) -S| E[F(-'Urﬂ) - <?:>J"+"§.’[G(xm>—atxrn
=[7 (bhﬁnﬂiﬂibﬁﬁiﬁ&a%]‘g_m

Thercfore f(x) s of hounded V'u:w,tum tn {a, b).

V. If fiiz) and fix) are two fumiwns of bounded variation, so are f1(=) % fo(*)
and f(x) fola).

Also, if f{x) iz of boundm} “!a‘(}f?ﬂi‘&ﬁﬂ-, and | f{z)| < some definite positive number
in the tnterval, then 1 ff&)\gs of bounded variation.

(i) Lot fl(x} Fylz) — Gy} and  fylz)=Fylx) - —Gylz),
where Fi{x), F.,I*a‘}, Gy{z) and Gyl¥) arc positive momotenic increasing
fonetions, /0
Thon « {7 fyfx) +fo(@) =[Fu(w) + Fa{2)] —[Gofz) + Gof) ],
“and the\m of the given funetions is of bounded variation by Theorem EV.
Slnlﬂqu\r for the differencc and product.

\ s} (’11} With the usnal notatlon,
f 1 |J L Jrl

1
= |ttpaq — el
| ¥4 ?Jr |*1r+1||yr J”“2 2 v

i f{z) > =0
Thus the sum ¢ for 1 Mf(x) is fess than T'/p3, where T is the total variation
of 7{x) in tho intervsl,

VL. A function of bounded variation has only ordinary disconiinuifies.
This follows at once from Theorem IV, for the discontinuities of f{x} muat
also be discontinuities of F(x) and G{z),and these are ordinary discontinuities.

(§ 34.)
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T{ the discontinnities of f(x} are infinite in number, they are
infinite,
For, if we have a sequence 7y, ng, % -.. When

countably

P>y and  lmoa,=0,

e
we know that there is only a finite number of points at which
Flz+0) - Flz -0 > 9,
where # i3 any positive integer. ~
VIL Iffix) is of bounded variation in (o, b) end contintous af o pointcof f}wt
interval, then T(z), P(z) and N(x) are also confinuous at c. AN
Take the arbitrary positive number e. There is a roode of divistoy0f¥e,e),
BRY @, Xy, Xz, +v Ty, G SUch that the sum ¢ for it satisfies y >

()~ Je < t = T(e). ~
Alan there iz & neighbourhood of ¢ such that ,"‘..\\
[£@)-f(c)| <}e when O<c—zmh
It is clear that we can take z,_, within this ngighéé‘urhood, for if it were
outside it, by adding a point of section within ity w‘a do not dimipish thesum .
Also =S 100l + 170 Hon)
wwrw.d blgliﬂr{k};‘-ﬁ_lfﬁl_?; g-in
= 7(E20) + e,
since T'(x) is a monotonic incressing function.
Thns T{QL‘-— e T~ 0y +1e,

and c N <Tle-0)+e
Tt follows that N P(c) = T(c—0).

But, since T{z) ig.n;(motonic increasing, T(e) 4 Tec - 0).
Theretore we migivhave T(c)=T(s - 0).

Taking a ngighbourhood to the right of @, we find in the same way that

ﬁ}"\ P(c)=T(e+0).
Thufs\ ) is continuous at  =¢, and the same holds for P(x) and Nix).

:.3\7 \ 'E‘un(.:tions of Several Variables. So far we have dealt only
\mt]i functions of a single variable. If to every value of = in the
inferval @ = = b there corresponds a number y, then we have said
that y is a fanction of  in the interval (@, b), and we have written
y=f().
The extension to functions of two variables is immediate :
To every pair of values of z and y, such that

ezxza, b=y=¥,
let there correspond a number 2,
© and y in this domain,
B

Then 2 4s said to be a function of
and we write 2= f(z, y).
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If we consider z and y as the coordinates of a point in a plane,
to every pair of values of & and y there corresponds a point in the
plane, and the region defined by a=2=d’, b=y=8' will be
a rectangle. '

In the case of the single variable, it is necessary to distinguish
between the open interval (a<Cz<(b) and the closed interval
(¢=wx=b). Bo, in the case of two dimensions, it is wellzto
distinguish between open and closed domains. In the former $he
boundary of the region is not included in the domain; in theJdgtter
it is included, O

In the above definition we have taken a rectangle f¢tthe domain
of the variables. A function of two variables may’be defined in
the same way for a domain of which the bouliddty is a curve (:
or again, the domain may have a curve (' for Mg -external boundary,
and other curves, €, ¢, ete., for its intéefial boundary.

A function of three variables, or azn}:fhumber of variables, will
be defined as above., For three variables, we can still draw upon
the language of geometry, and§f¥rolitliardorngiin as contained
within s surface 8, ete. Ny

We shall now refer b;jcf{j"to gome properties of functions of
two variables, 4 _

A function is said *ﬁ:‘\be bounded in the domain in which it is
defined, if the sef of alues of z, for all the points of this domain,
forms a boundeddggregate. The upper and lower bounds, M and
m, and the ¢deiflation, are defined as in §24.

Flz, y)’“@}éid to have the limit  as (z, y) tends to (g, o), when,
any posiivve number ¢ having been chosen, as small as we please,
thetg\ts o positive number n such that | f(z, y) - 1|< e for all values

qu{’x, y) for which
N eafsy yenl =0 end 0<[z-z +y gl

In other words, | f(z, ) — I} must be less than ¢ for all points in
the square, centre at {z,, y,), whose sides are parallel to the co-
ordinate axes and of length 27, the centre itself being excluded
from the domain,

A necessary and sufficient condition for the existence of a limat
to fz, y) as (z, y) tends to (3 Yo) 13 that, to the arbitrary positive
number e, there shall correspond a positive number n such that
|f&, ')~ fla”, N <ce, wheve (&', y') and (2, y") are any two
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points other than (Zg, ¥o) o0 the square, centre at (g, ¥y), whose sides
are parallel to the coordinate azes and of length 27.

The proof of this theorem can be obtained in exactly the same
way as in the one-dimensional case, squares taking the place of the
intervals in the preceding proof.

A function f(x, y) is said to be continuous when 3=z, and
y =y, if flz, ¥) has the limit f(z,, #,) 88 (, ¥) tends to (zg, o).

Thus, f(z, ¥) is continuous when w=1, and y=yy, if, to the arbi>
trary positive number €, there corresponds « positive nuinber neduch
that | flz, §) —fl@g, yo)l<e for all values of (x, y) for whick O

{ %

lw—2gl = and |y—yol =7

In other words, | f(z, ¥)—f(®, )| must be 166 than ¢ for all
points in the squaze, centre at (%, ¥,), whose Qides are parallel 10
the coordinate axes and of length 2#.% O

It is convenient to speak of a functioh(ds continuous «t @ pomnt
(g, o) instead of when w=z, and y=Yy, Also when a function
of two variables is continammsubiblapgfirasidefined above, for every
point of a domain, we shall say that it is a continnous function of
{z, ) in the domain, N

It is easy to see tha,tm e ‘can substitute for the square, with
centre ab (%, ¥,), referpédito above, a circle with the same centre.f
The definition of & hﬁn} would then read ag follows:

Ttw, y) @5 said tg\Bave the limit 1 as (x, y) tend to (2, o), U 10
the arbitrary positive number e, there corresponds a positive number
n such ﬂm\[}(ﬁc, )~ <<e for all values of (w, y) for which

‘.~\\“ Ol 2 +(y - o)} = 1.
. :«i'function‘ converges at (g, 4,) according to this definition
\E?a:sed on the circle), it converges according to the former defini-

on (based on the square); and conversely. And the limits in
both cases are the same,

Also Cofltin“it}’ at (zq, #4) would now be defined as follows:
Jl@, y) is continuous at (%o, Yo)» o, t0 the arbitrary positive number ¢,

*Thi i . .
with :;Zi;’f (f;b";ﬁ;li:hmges ta be made in these statements when we are dealing
i defined, o Yo oue of the boundaries of the domain jn which the funetion

tWe may also use a rectangle, centre at (z,, Yp)» and sides 2y, 29’ say.
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there corresponds a positive number 1y such that | f(z, y) — flxg, yo)| <<e
for all values of(z, y) for which
B —2o)* +y -l =7

Every function, which is continuous at (zg, %) under this de-
finition, is continuous at (%, y,) under the former definition, and
conversely.

It is important to notice that if a fonetion of x anl y is continuons with
respuot to the two variables, as defined above, it is also continuons whendbn-
sidered as a function of « alone, or of ¥ alone. N

Tor example, let f(z, y} be defined as follows: ¢\

: 2 N &
’ Sl yi= g iyya’ when at least one of the variables ia notizero,

Fan
L

i 710, 01=10 >

Then fix, 7} is a continuous function of z, for all va‘lﬁ\eﬁ of », when y has
any fixed velue, zero or not; and it is & contingous funetion of ¥, for all values
of i, when x has any fixed value, zero or not. \

But it is not a continuous fanction of (r, yamany demain which includes
the origin, since flx, ¥) is not continuous wlea €0 and y =0,

Tor, if we put x=»cos f, y=rsin ), we ha,{'ef{x, y)=sin 26, which is inde-
pendent of #, and varies from — lﬁ-ww‘ibb}'aulibral'y_org_in

However, it i3 a continzous fu.u{:@;‘iun of (#, ¥} in any domain which does
not include the origin. N

On the other hand, the fu“nc’biéﬁ delined by
- _ 2xy
“ (o )= ia +Lajl”J
L0, 0)=0, X\ -
is a continuous fufietion of (x, ¥) in any domain which Inchudes the origin.
The t}mr_:ren{rs' A% to the continuity of the sum, preduct and, in certain
Cases, quoL‘idrfb of two or more continuous functions, ean be readily exteoded
to the case), f functions of two or mere varables. A continuous function of
one qf\@.oie continuous functions is also eontinnous.
QII,P I}—.lrt-icula-r we have the theorem:
) \.Ltft u=ciz, 4}, v=y(x, y} be continuous at (s o) tnd Lot uy=1b {2y Yol
PN =V (Zg Ho)-
\ / Let z=f{u, v) be confinuous in (¥, 0) af (g, Yol
Then z={| ¢z, ). ¥{x, ¥)] is continuous in (x, y) at {Zg, ¥yl
Further, the general thecrems on contiruous functions, proved in § 31,
hold, with ouly verbal changes, for functions of two or more variables.
For example:
If @ function of two variables is continuous at every poind of a closed domain,
il is uniformly confinuoug in the domain.
In other words, when the positive number ¢ has been chosen, as small as we
please, there is o positive number 3 such that 11 (', ¥ y=flx”, )| <e when
&, ¥') and (z", ") are any two poinis in the domain, Jor which
Vi -2 Ry -y =

{@hen at least one of the variables is not zero,
3
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CHAPTER 1V N

THE DEFINITE INTEGRAL ()

38, in the usual clementary treatment of the D:eﬁpi%e Integral,
defined as the limit of a sum, it is assumed tha’n‘\the function of =
considered may be represented by a curvé’\ The limit is the
area between the curve, the axis of z and\tle two bounding ordi-
nates. \\

For long this demonstration wasg act}epted as sufficient. To-day,
however, analysis is founded,m dreme selidohagis. No appeal
is made o the intuitions of geometry. Further, even among the
continuous functions of anéfysﬁs, there are many which cannot
be represented graphjcallsﬁ'.""

E.g. let ﬂg:)-_:c gin i, when £=0, ]
and \\ F(0)

Then f( .1:) 1s~contmu0us for every value of &, but it has not a
different,l&[ coefficient when z=0.

$
It is/Gentinuous at x =10, because

N @) ~FO) =@ =1 s
dnd | (@) —f(0)| <e when 0<[z|=n, if p<e
o~ :\ "Also it is continuous when £ = 0, since it is the product of two continnous
\J functions [cf. § 30]. '
It has not 4 differential coefficient at € =0, because

L0110 g, ]

and sin 1/% hag not a limit as A—0.
Tt has a differential coefficient at every point wl_mre =0, and at such

points
i 1
Say= am-———cosx.
50
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More curious still, Weierstruss discovered a funetion, which is
continuous for every value of z, while it has not a differential
coefficient anywhere.* This function is defined by the sam of
the infinite series .

Wl
> a7 eos b,
a

@ being a positive odd integer and b a positive number less than
unity, connected with @ by the inequality ab>>1 -+ St

Other examples of such extraordinary functions have Mebn
given since Weierstrass’s time. And for this reason alone 1§ ould
have been necessary to substitute an exact arithmetiesl tlpatment
for the traditional diseussion of the Definite Integral /2

Riemanni was the first to give such a rigorgts arithmetical
treatment. The definition adopted in this chapter is due to him.
The limitations imposed upon the integrand/f@} will be indicated
as we proceed. N

In Higher Analysis the Riemann Iptégial hag now been super-
sed.ed by the Lﬁes%}}}&ﬁ%ﬁgﬁbﬁg?ﬁgﬁ the others allied to 18,
This advance dates from Lebesgug’s first momoir, which appeared
in 1902.§ Much has since thext* been done in this field, but the
ideas involved are far frorgelementary; and, though it is especially
in the rigorous treatment{éf the Theory of Fourier’s Series that the
advantages of the néwdefinition of the integral are to be found,
it does nob seem (proper to introduce it into this work. In an
A'ppendix][ the diebesgue Integral is defined and somc of s
distinctive properties are obtained; also it is shown in what way

its intreduttion simplifies and completes the more elementary
treapmeht of the text.

SN
£\ soems impossible o assign an exact date to this discovery. Wederstrass

bimself did not at once publish it, but communicated it pri i ;

; ; _ " ted it privately, as was hia habit,

to h.\a pupils and friends.  Du Bois-Reymond quates it in a paper published in 1874

ubgl:“l.?’fhﬂ; shown that this relation can be replaced by O< -1, 431 and

USLLE T dne M, S 7 10, R e i,
ia to be found in & paper, “Infinite Deriv " it oS

Math., 47 {1918), 127, by Grace Chisholm %]011:11;. erivste” Quart. /- 4f

1o his clessical paper, Uber die Darstellbarkei ci ; ine tri
merische Roshe. Soaaparer o o arkett einer Funclion durch eine trigono-

B::xt the earlier work of Cauchy and Dirichlet must not be forgotten.
§“Intégrale, Longueur, Aire,” Annaki di Mat, (3), T (1902), 230.

Beo A i
h“;nm 3 ppendix TT, where references to hooks and memocire on this subject will
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39. The Sums § and s.* Let f(z) be a bounded function, given
in the interval (e, b).
Suppose this interval broken up into » partial intervals
(CL, 551)3 ($1, 132), (:Eﬂ—l’ b);
where I T N B
Let M, m be the upper and lower bounds of f(x) in the whole
interval, and M, m, those in the closed intervel (2., Z,), writing

u=7, and b=, N\
Let  S=M (e, —a)+Myleg—21) +. +Mo(b~ Y B
and § =iy (g — @) +1g (R —By) + oo T, (D= Zna), A\

To every mode of subdivision of (a, ) into such partigkintervals,
there corresponds & sum & and a sum s such that SES.

The suns S have a lower bound, since they atetall greater than
wb — &), and the sums s have an upper boundy since they are all
less than M{b—a). AL

Tet the lower bound of the sums S.\sty, and the upper bound

of thé sums s be [,
We shall now show that L33« dbraulibrary.org.in
Let Gy X1y o T3 v Tno1s g

be the set of points to whigh'a certain S and s correspond.

Suppose some or all of The intervals (g, @1}, (%1, €g), vor (Tn-y B)
to be divided into s;mﬁ}fler intervals, and let

@ Y1 Yo BYp-v L e Yrev oo Yoo Xy, Yo -n

be the set of potuts thus ebtained,

The secoud/mode of division will be called consecutive to the
first, whenit is obtained from it in this way.

Let. &) o be the sums for the new division.

(ompare, for example, the parts of S and X which come from

, .\:ﬁé’in‘uerval {a, o).
" Let M’,, m'y be the upper and lower bounds of f(z) in (a, ¥1)

M, myin (¥, y,), and so on.
The part of T which comes from (, .} is then
My, —a) + M o(ya Y1) + M)~ Ymr)-
But the numbers M',, M',, ... cannot exceed M,.
Thus the part of ¥ which we are considering is at most equal
to ﬂfl(a‘,‘}_ - a,)_

*T'he argument which follows is taken, with slight modifications, from Coursat’s
Cours d’Analyse, 1 (4° 6d., 1923}, pp. 171 & seq.
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Similarly the part of = which comes from (x,, #,} B at most
equal to M y(z,—~ ), and so on.

Adding these results we have T =5

Similarly we obtain o =S

Consider now any two modes of division of (a, b).

Denote them by

@, @, Ggy oo Fpyoy by with sums S and s, oo (1)
and & Y1 Yo o Ynoyp b, With sums 8 and &' 32]\

On superposing these two, we obtain a third mode of divisign, (3Y
consecutive to both (1) and {2). \Q

Let the sums for (3} be £ and ». . o
Then, since (3) is consecutive to {1), ."‘.,\\
S=Z% and s=s. \ '
Also, sinee {3) is consecutive to (2), \\
8=3 and &= )
But T=o. o\ W
Therefore vy BitstaulbRgt YU 4

Thus the sum S arising fron)}’a;riy mode of division of {u, b} 18

~ not less than the sum s arisilg from the same, or any other, mode
of division.

It follows at once th@tf =dJ.

Tor we can ﬁn@.z}.snm s as near I as we please, and a sum S
(not necessarilp\ftom the same mode of division) as near J us We
please. If Ipof , this would involve the existence of an ¢ and an
8 for wh@l\‘>$

The ﬂ@ment, of this section will offer less difficulty, if the reader follaw

it foraft ordinary function represented by a cucve, when the sums & and §
'ngfeier to certain rectangles associated with the curve,

i 40. Darboux’s Theorem, The sums S and s tend vespectively
i toJ and I, when the points of division are multiplicd wndefinilely
| an such o way that all the pariial intervals tend fo zero.

Stated more precisely, the theorem reads as follows:
. If tkegosa’tiw number e 15 chosen, as small as we please, there
18 @ posthve number % such that, for all modes of division in which
all the partial intervals ave less than or equal to v, the sum S is greuter

than J by less than :e,_a-nd the sum s is smaller than I by less than e.
Let e be any positive number ag small as we please.
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Qince the sums § and shave J and I for lower and upper bounds
rospectively, there is a mode of division such that the sum S for
it exeeeds J by less than de.

Let this mode of division be

@, @y, fg Gy 1, b withsumsS;and s ...

Then Sy<d +3e.

Let % be a positive number such that all the partial intervals
of {1} arc greater than #. .
Let A

. 4N ”
A=y, Ty, Ty oo Tyoyy b=y with sums S, and.2,, cn{2)

be any mode of division such that )

(g, —x,_) =7, when r=1, 2, %
The mode of division obtained by superpoéing (1) and (2),

€.g. @, &, Ty, Oy, Ty, G, Ly +e+ Tpogs Oy, “{i,tﬂ}}s{lms S, and g, ... 3)
is consecitive to (1} and (2). O -

Then, by § 39, we have S&T% S‘Einf'élulibrary.org.in

But Slgz‘ff tie

Therefore Sa<‘:“J +3e.

Further, N\

Sy—8y=2 {M({”}bl &, )2, — Tyoq) — M2y @)@y — %)
L\ - M(ay, 2}, — @)

Mz, 2" depqt:ihg the upper bound of f(%) in the interval (@', '},
and the sytbol 3 standing as usual for a summation, extending
in t-his..qa'«g.}"to all the intervals (z,_y, #,) of (2) Which have one of
the points a,, @y, ... 4, ; as an internal point, and not an end-
Pﬂiﬁt. From the fact that each of the partial intervals of (1) is
¢Bidater than u, and that each of those of (2) does not exceed 7,
Wwe see that no two of the @’s ean lie between two consecutive z's
of (2).
There are at most (p— 1) terms in the summation denoted by
2. Let | f{z)} have 4 for its upper bound in {g, b).
We can rewrite 8, — 5 above in the form
85— 8y =2 [{M(Z,y, %)~ Mz, 00— Tr-1)
+H{M(Z s ) — M@, T} (@, — 5))-
But {M(x,_;, «,) — Mi{z,_1, %) and {M(z, 1, 2,)- Ma, =)}
are both positive or zero, and they cannot exceed 24.

o
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Therefore 8y~ 8y 1245, - 2,4,
the summation having at most (p— 1) terms, and (x,- 7, ;) being
at mos$ equal to %.
Thus 8,-8,=2(p-1)4n.
Therelore 8y<d +1e+2{p-1)A4n,
since we have seen that  S3<f +3e.

So far the only restriction placed upon the positive number %

has been that the partial intervals of (1) are cach greflef
than #. O

We can thus choose # o that ~\

7N
L

Ny

€ +%7)
??<4'(1ﬂ—__1—)—A. .m}\\
With such a choice of 5, 8>J +«. R
Thus we have shown that for any wmode ({'@%ﬁ;ﬁ;on such that t?.ae
greatest of the partial intervals is less iy or equal fo o certoin
postlive number 1, dependent on e, the“ om S exceeds J by less
thart c. www\dbl'aulibrr.at)'y'.org,in
Similarly for s and I; and it:4§ ‘obvicus that we can make the

same 1 satisty both § and “s,’f)fy‘ taking the smaller of the two 10
which we are led in this a{gument.

41. The Definite Titegral of a Bounded Fumction. We now
come to the definifion of the definite integral of a bounded function
flz), given in ax(interval (a, b).

4 5oundf{d\function f(@), given in the interval (a, b), is satd to be
ntegrablesithat snterval, when the lower bound J of the sums S
and t(ag%}m bound I of the sums s of § 39 are equal.

The, commnon valie of these bounds I and J is called the definite
w&jb!{égml of f(z) between the limits @ and b, and is written

{ ey

It foliows from the definition that r F(#)dz cannot be greater

than the sum S or less than the sum s corresponding to any mode

of division of (2, 5). These form approximations by excess and
defect to the integral.

*The bound J of the sums § is usually called 2
!
bound 7 of the sums s the lmwer integral.y el the wpper iningrad ot fe) s £1e
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We can replace the sums
S=M(x —a)+ Mz, ~2)+.. + M (b—=,_,), )
5= g (8~ ) Wy (@~ ) oo+ oy (B = T ),
by more general expressions, as follows:

Let &), &, ... &,, ... &, be any values of z in the partial intervals
{2, 21}, (&, ®y), v (B, 10 %), oon (7,4, B} respectively.

The sum ~
FOEN @~ ) 1P g = 73) + oo HFENE ~ Ty y) oo L)
obviously lies between the snms § and s for this mode of dw}mon,
since we have m, = f(£,) = M for each of the partial mtervals

But, when the number of points of division (,) diicreases inde-
finitely in such a way that all the partial inte alg tend to zero,

the sums S and s have a common limit, namely I Sl da,

Therefore the sum (1) has the same lishzt: ™
Thus we have shown that, for an.m}ﬁegra,ble function f{z}, the

SU J(&E ey~ a) 4ﬂ§%2($&’r dhf‘}a:ﬁlbr‘;j)g%;‘éﬁn %-1)

has the definite integral j'(ar')da: for its limit, when the number

of potnts of division (z,) gnéreases sndefinstely in swk @ way that all
the partial intervals tem{‘to zero, £y, &g, .. &, being any values of @
in these partial m&erv&i&’ *

In particalar, we\may take a, 2y, T3, ... Ty_y, OF Ty, Ly, oov Fpqs b,
for the va]ucs\ﬁf £y, Egr e Epu

42, Neces:sai'y and Sufficient Conditions for Integrability. Any
one of\ths following is a necessary and sufficient condition for the
lﬂtt‘,g{‘\blhty of the bounded function f(z) given in the interval
(.5

NI When any positive mumber ¢ has been chosen, as small as we

;plea%e there shall be posuwe number n such that S —s<Ce for every

mode of division of {z, b) in which all the partial intervals are less
than or equal to y.

We have 8§ —s<¢, as stated above.

But S=dJ and s=L

*We may substitute in the above, for f{&); f(Ed .- flinh any values oy, s .o iy
intermediate between {3, m,), { My, my), ete., the upper and lower bounds of f(z)
in the partial intervals,
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Therefore. J - [<e.

And J must be equal to I.

Thus the condition is sufficient.

Further, if 7=J, the condition is satisfied.

For, given ¢, by Darboux’s Theorem, there is & postlive number
n such that S—J<}e and I-s<je for every moe of division
in which all the partial intervals are less than or equal to ¥

But S~ s=(§~J)+{I -5}, sinee {=J. R

Therefore 8-s<e. O

'\
11. When any positive number ¢ has been chosen, as snuplias we
please, there shall be @ mode of division of (@, b) such thal 8- ye.
It has been proved in (I} that this condition is stfftient.  Also
it is necessary. For we are given I=J, as fla)iguntegrable, and
we have shown that in this case there are

a@{:number of modes
. . ;
of division, such that §—s<e. ¢

115, Let o, o be any poir of positive numbert&. } Phere shall be o mode of
division of (a, b) such that the sum of the lquths”of the partial interrals in which
the vscillation i greater thm&]ﬁr;_ e m@g@{ begdetn than o.*

This condition is sufficient. For,having chosen the arbitrary positive
number ¢, take . RN

£ £
a-:2—ﬂz—-l = and m:m2(b ~y

where M, m are the uppewand lower bounds respeetively of ft2) in {a, B).

Then there is a mode of ‘division such that the sum of the lenzths of the
partial intervals in shich the oscillation is greater than or equal to w shall
be less than o, SLef tbe intervals {z,.,, x,) in which the oscillation is greater
than or equal 30\w e denoted by Dy, and those in which it is less than o by dr,
and let thesoséillation (M, —m,) in (x,_,, x,) be denoted by w,.

Then waave, for this mode of division,

R\ 8- &= Yw, Dy + Sud,
4 ¢\' $ € €
L 3 {{M‘%)m}+m(b-—a}
< 3
<z €,
and, by (I}, f{z) is integrable in (a, b),

Alsu? the condition is necessary. For, by (II), i F() is infegrable in (&, b}
there is 4 mode of diviston such that § — 5 < we. Using /3., d, as abave,

8~ s=Zw Dy + D,
= Zo.Dy

— Zwll.

£
2

*Cf. Plerpont, Theory of Funclions of Real Varigbles, 1 {1905), § 498.
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Thercfore wr > iy,
and D, <.

43. Integrable Functions.

I. If fiz) is continuous wn (a, b), it is integrable in (a, b).

In the first place, we know that f(x) is bounded in the interval,
since it is eontinuous in (@, b) [cf. § 31. 1].

Next, we know that, to the arbitrary positive number e, there
corresponds & positive number # such that the oscillation of f{z)
is less than e in all partial intervals less than or eqqa\l:{,o ]
fef. §31. 11, N\

Now we wish to show that, given the arbitrary posipiy.,e‘ﬂumber &
there iz @ mode of division suech that 8§ —s<Ce [§ 42;.?1[]‘.' Starting
with the given e, we know that for /(b — @) thefe is a positive
number 7 such that the oscillation of f(z) is lagsthan ¢/(b — a) in all
partial intervals less than or equal to 7. 0 /

Tt wo take a mode of division in ghieh the partial intervals
are less than or equal to this %, them for it we have

- s S ey o
Therefore flu) is int-egrabiéﬁhﬁ {a, B).

11, If f(«) is monotopichin (a, b), it is integrable n (@, b).*
In the first place.\t%:e note that the function, being given in the
closed interval (r:g-,\b;, and being monotonic, is also bounded. We
shall take thg easte of a monotonic increasing function, so that
wehave (57l0) = f(e) =S (@) 2f0a) E10)
for the mddc of division given by
N @, Ty, Ly eee Bpeds h.
TFhus we have
PR ,
<3 S S=f(an)z - a) +f (@)@ = Fo)e H (OB~ 2u)s ]
S=F(a) (- 0) +f ()@~ 50)ees +f @0~ Ter):)
Thercfore, if all the partial intervals are less than or equal to 7,
_ S—s=q[f®) -f@l
smee Flay—fl@), [z ~fl(@,), .- (D) ~flew, )

are none of them negative.

*Rince a funetion of bounded varialion (cf. §36. 2} is the difference of two
monotonic functions, it follows from § 45, I1T that functions of bounded variation

are integrable.
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£

If we fake y <f{b) _ftay
it follows that 8- s<le

Thus f () is integrable in {«, ).

The same proof applies to a monotenic decreasing function,

We have seen that a monotonic function, given in (1. b} can
only have ordinary discontinuities, but these need not he fimite
number (cf. §34). We are thus led to consider other cases 1nd
which a bounded function is integrable, when discontinuities gi\thc
function oceur in the given interval. A simple test of integra-
bility is contained in the following theorem: PAN My

I3, A bounded function is integrable in {a, ), wheul it points
of discontinuity in (a, b) can be enclosed tn a fintle nugmder® of inlervals
the sum of which s less than any arbitrary positale™ nmber.

Let e be any positive number, as smailx';cne\"we please, aud let
the upper bound of | f(x}]| in {a, b) be AN

By our hypothesis we can enclose all thie points of digcontinulby

of { é’n) in a finite number &%LMBE@'-%%- gam of which is Jess than

The part of § -5 coming {fom
multiplied by theiv suom. L

| On the other han@i*ﬁx} is continuons in all the remaining
| (closed) invervals, XN

.

these intervals is, at wmost, 24

We can, thorefOre, break up this part of {a, b) into a fuite
number of paxfial infervals such that the corresponding portion
of 8-s<iofef. (1))

Thus\t:}%’hombi-ncd mode of division for the whole of {r, #) I3
such hat for it 8~ s<e. —

. ‘\]:‘Lehcc f(«) 1s integrable in {a, b).
\”\ ™ in Pf“?ti‘c\.ilar., a bounded function, with only a finte muwmber of
- Vidiscontinuities in (a, b), ©s integrable in this tnterval.

The discontinuitios referred o in this Theorem Il necd not

be m‘dman:@r dl‘S'COn‘b‘lnl.llt}IES, but, ag the function is hounded, thoy
eannot be infinite discontinuities,

*1t wi - i
30001‘(1??15 EE S];‘_)“ tn fXPP‘P-“d_l?_C 1L, §10 that » bounded funetion is olse integrable
4 femann’s definition of the iniegral, when the points of diseontinuiby

SAn be E)’lfﬁ}()ﬁed in an iﬂﬁllif(_‘, numbe ]
« : r of inlervals, i ; :
£ these intervals oa . made miery 118, if lhe B Of the ltng"hs

! : as amall ez we please, a ; i a1 jits
pointa of discontinnsity form & countarls inﬁngt:} o e, and, in particular, when its
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IV. If a bounded f-?mct?'on 15 integrable in each of the partial
gritervals (a, o)), {ay, ag), .. (ay_1. B), 2@ @5 tniegrable wn the whole
triereal {u, b).

Since the function is integrable in each of these p intervals,
there is & mode of division for each (eg. «, 4, o), such that §-s
for it 1s less than ¢/p, where ¢ is any given positive nomber,

Then &- s for the combined mode of division of the whole
interval (r, &) ig less than e. Q.

Therclore the function is integrable. \

¥rom the above results it is clear that if a bounded fz@cfwn 5
such that the interval (a, b) can be broken up into o finvle’ number
of open partial intervals, in each of which the functigh, 19 monotonic

or co-ni-inuous, then 1t 1 integrable 7n (a, ). R4
. If the bounded function f{x) is integrabled {a, b), ther | f(z)]
8 a.!eo integrable in {a, b). \J

{2
rI his follows at onee, since §—7s for U($)] is not greater than
~ & for f(z) for the same mode of division.

It may be remarlxed ‘that the Ebﬁﬁé;@@%kl hoaihpldrg.in

E.g. let fir) =1 for rational values) of z in {0, 1),
and ‘,f"(r)_ -1 for J_rra.twnal'valuas of xin (0, 1).

Then ! f{z)| is integrable, but ¥{x} ix not integrable, for it is obvious that
the condivion (IT) of § 42 iggiqtsatisfied, as the oscillation is 2 in any interval,
however small. K x\

44. If the bounded}unctmn f(x} is integrable in {a, h), there are an infinite
number of pomts m any partial interval of (a, b) at which #{x) is centinuocus.*

Lt o= a2 L}S . be an infinite sequence of positive numbers, such that

t\" Lim w, =1,
& N s

Let ’%;”} be any interval contained in (@, b) such that ¢ Za < g =b,

Thml by §42, TIL, there is a mode of division of (e, b} such that the snm
Of”iht‘ partial intervals in which the oseillation of f{z} Is greater than or cqual

\ tU‘ oy iz Joss than (- a).

T we remove from {a, bj these partial intorvals, the remainder must cover
&l least part of (a, §). We can thus choose w ithin (¢, ) a new interval
{y, By) such t}mt (f,—a) < & B-a) and the ‘oscillation in (ug, 8) is less
than .

Proceeding in the same way, we obtain within (=, §y) a now interval (e, 5,
such that (3, —a,} < 1{f, ~ e,) and the oscillation In {ag, fiy) is less than w,.
And so on.

- FCE Piorpout, foe, edf., §508. A wore general theorem i# given in Appendix T,
§10.
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Thus we find an infinite set of intervals 4,, 4,, ..., each contained entirely
within the preceding, while the length of 4, tends to xzero as n—>, and the
oscillafion of f(x) in 4,, also tends to zero.

By the theorem of § 18, the set of intervals defines a point {c.g. which
lies within all the intervals.

Let ¢ be any positive number, as emall as we please.

Then we can choose in the sequence wy, wy, ... & number w, leas than e

Let A, be the corresponding interval {a,, B, and « a positive number smaller ,
than {¢~a,) and {#; —¢l.

Then V@) -fle) <& when jx—c| =1, )

2 AN
and therefore we have shown that f{x) is continuous at c. \'\
Since this proof applies to any interval in. {a, b}, the interval {q, .,rb')’ eontains
an infinite number of points at which f(x} is continuous, for anyphctéat {m, 5,
however small, confaing a point of continnity. !

AN\

45, Some Properties of the Definite Integral, We shall now
I

. b )
establich some of the properties of j fle)de, “the integrand being

bounded in (¢, b) and integrable,

L. If f(=) 45 integroble ndligsdani ﬂf@xMﬂteﬁabZe in any interval
{a, B) contained in (a, b). \\

From § 42, I we know that to the arbitrary positive number ¢
there corresponds a posifave number # such that the difference
8 — s<Ce for every mo@e of division of (a, b) in which all the partial
intervals are less thian or equal to #.

We can chogs€?s “mode of division of this kind with (a, S} 28
ends of partialustervals,

Let 3 gboAhe sums for the mode of division of (a, £} included
in the above.

Then we have 0=2-=8-s<e.
m;’l:husf(:c} 1s integrable in (a, £) [§ 42, I1].

™
¢

IL. If the value of the integrable function f(z) is alfered af a finite
i ?}umber of poinis of (a, b), the function () thus obtained is inteyrable
| @ (a, b), and its integral 1s the sume as that of f(z).

1 We can enclose the points to which reference is made in a
; finite number of intervals, the sum of which is less than /44,

*, Where ¢ i‘?’ any given positive number, and A is the upper bound
- of |¢(z}| in (g, b).

The part of S~s for ¢(x), arising from these intervals, is ab
most 24 multiplied by their sum, i.e. it is less than %e.
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On the other hand, f(z) and ¢(x), which is identical with f{z)
in the parts of (¢, b) which are left, are integrable in each of these
parts.

Thus we can obtain a mode of division for the whole of them
which will contribute less than e to S-~s, and, finally, we have
a mode of divigion of (@, &) for which § - s<e.

Therefore ¢(x) is integrable in (e, 5).

Further, r pla) dx:.r Sz} . \

13 i

A,

Q.

b P
Far we have scen 1n § 41 that J. ¢(x)dx is the limit gfs.\

P& Ney — a) +p{ENza— ‘ml) +.. +‘f’(§n)'(a\_ Tpo1)
when the intervals (o, #), (#q, 23), --. (%,_1,-0X Pend to zero, and
£4 &y, .o &, are any values of 2 in thesei tarvals.
We may put f(&,), f(&), . &) foLx:Bﬁ- 1 (&3, {(£,) 1
this sum, since in each mterv&l there are pmnts at “hmh g’;[m) and
flz) azc equal.
In this way we obfain a s‘amw’cﬁbth@lfbmjmrglﬁ ENz, — 2, 4),

which is identical Wlthj I (x')dx

ITE. Tt foliows 1mmedﬂatdv from the definition of the integral,
that if flz) is m&e{éﬁbk i (e, b), so also 1s Cf(w), where U 4s any
constant.

Again, +f fI(.:ig).’and folx) are integrable in (a, b), their sum 1s
also integrable,

For, 1&(?15’" , (8, 5’y and (Z, ) be the sums corresponding te
the sateanode of division for fi{z}), fol2) snd fi(z) +Fglz)

1}§,en it is clear that
O = (8-5)+(8 -4,

\ and the result fol]ous
Also it is easy to show that

E Of(z)dzx= O.E flz)dz,

wd [y p) chiapde= pwde [ s

IV. The product of two integrable functions fi(z), faolx) ds integ-
rable,

To begin with, let the functions f;(z}, fo(z) be positive in (a, ).
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Let M, m,; M',, m';; M, m, be the upper and lower hounds of
fa(@), folz) and fi(z) fy{z) n the partial interval (& _y, r.).
Let (S, 5), (S, ") and (2, o) be the corresporuling sums for a
certain mode of dumlon in which {z,_,, *,) i a partial interval.
Then it 13 elear that
M,-m,= MM, ~mm =MM - ! Y 4l (M =)
Afomom, M —m, = MM, - w' )+ MM, -,
where M, M are the upper bounds of f,{z), Fa{s) in (¢, ).
Multiplying this inequality by {z,-=..,) and arjding the coﬁ{e
sponding resulis, we have .‘ N
S -o= M8 -y + M5 - 8). N
T4 follows that S — o tends to zero, and the products ol f o), fol#)
is integrable in {(a, ). ~\
It the two functions are not both positive “thr oughout the
mte:rval, we can always add constants ¢, &}thé, so that file

o)ty
fol@) +¢, Temain positive in (g, b). ,\
The produet .
(fﬂ@*”ﬂﬁﬁ%bt%kﬂmméﬁwd@w%@)—%fﬂx~«ﬁa
is then infegrable.

But ¢, f,lx) + e, fi{x) +eqc, 38 m‘begra.ble
It follows that fi{2) fo{z) s mtegrable

On combining thesg“rbsults, we see that if fy(z), fole) - ful®)
are integrable functions; every polynomial in
O fileh fila) - ful@)

18 also an mtegmble Junction®

46. I‘rqge}kxes of the Definite Integral (continued).
L QY [ torae=-[ pda.
&n the definition of the sums S and s, and of the definite integral
: \ ‘{ J(@)dz, we assumed that ¢ was less than b This restriction is,
however, unnecessary, and will now he removed
If a>>b, we take as before the set of points

a, ml-‘ fﬂg, .
and we deal with the sums

S=M;(@y ~ ) + Moty - w4} +... + M (b~ ;1)
s=my{y —a) +mylicy ~2)) ..+ m,(b—x,).

*This Tesult can be extended to any continmous function of the n fumctions
(ct. Hobson, Pheory of Functions of a Real Variable, 1 (3rd ed., 1927), § 337 (61

v Byq, b

H
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The new sum S is eqgual in absolute value, but opposite in sign,
to the sum obtained from
b, Z,.1, @ g - Ty, 4
The existence of the bounds of § and s in (1) follows, and the
definite integral iy defined as the common value of these bounds,
when they have a common value.
It is thus clear that, with this extension of the definition~of

(2} it
§41, we have [ fleydze= [ Jleyde O\
Ja Ju X v’
@, b being any points of an interval in which f(z) is holnded and
Integrable. { "tﬁ

I1. Fef ¢ be any pornd of an interval (a, b) i w?a(]ﬁf (x} 25 bounded
and integrable,

Then I.: Sleyde ::L Jln)da -|—J:Q>f{x) dz.

Consider a mode of division of () which has not ¢ for a point
of section.  If we now introduece Oy LY n addjtlonal point of section,
the sum S is certainly not mcreasétclll aulibrary org.in

But the sums 8 for (a c) sand (¢, b), given by this mode of
division, are respectively not less than [ Fflz)de and [ fix)dz.

Z

Thus every mod\nf}wm;ou of (@, b) gives a sum S not less than

O [ e+ raa.
it follows,t.h’at .

»\’\~ ‘I.if(x) d igLf(:c] dz +L Jiz)dx.

I)fs'\’m”éonsider the sum s, in the same way we find that every
mdde of division of (4, b) gives a sum s not greater than

~V [: fl@)dz +Ii f@)da.
ﬂ flayde sL flo)de +le f@)ds

Thus we must have

r f(m)dx::r

it i

It follows that

Jlo)dx J—J. florde

*Mha results proved in §§ 425 arc also applicable, in some cases with slight
verbal alterations, to the Definite Integral thus generulised.
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If ¢ Les on (a, &) produced in either direction, it in easy to
show, as above, that this result remains true, prov ded that flz)
is integrable in (a, ¢) in the one case, and (¢, &) in the other.

47, It f(x)=g(x), and both functions are integrable in {a, b},
o J

enj f(x)dx?-;;[ gix)dx
13 a

Let p(@)=f(z) —glx) =
Then ¢(x) iz integrable in (, b), and ohvmusly, from the 5um{
1 N\
j Plx)de = 0. O
b b P\
Therefore I fix) chHj- gle)dx - 0. ’ n \

CoronLarY 1. If flz) ds inlegrable in («, ), Hzen’wi

U an | fle)da oy

We have seen in § 43 that if f(z) is mtegrable in {u, 03, 50 also
is | fiz).

And o pes R

The result follows from the &b{')*vé theorem.
CoroLLaRY II. Let f(m) be :i-}t'tegmble and never negalive {8, b}.
b
If f(z) is continuous gf o(tn (a, B) and f(e)=>0, then I flaydu =0

- We have seen i §\4 that if f(z) is integrable in (4, §), it must
have points of ‘commmty in the inferval. What is assumed here
is that at one‘oDthese points of continuity f{z} is positive.

Let thigw;’;bint ¢ be an internal point of the interval (a, b), and
not a@d-point Then thers is an interval (¢, ¢'), where
a<0<§c<c”<b such that f(z)>% {or every point of (¢,

,10 b‘emg some pesitive number,

" Thus, since f{z) = 0 in (e, ¢, N flayde=0

4 ?

r

And, since f(z)> kin (¢, ¢, [’: Flayde s ke ~ o) >0,

Also, since f(2)= 0 in (<", ), [ flxydz =0,
wf c’.’

. Adding these results, w.e have 5 f (x)dz = 0.

The changes in the argument when ¢ is an end-point of (a, b)
are glight,
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CoroLnAryY LI, Let f(z) = g(z), and both be integrable in {a, B).

At a point ¢ in (a, D), let f(z) and g{z) both be continuous, and
s b

fley=gle). Thenj- f(:c)da;>". glz}dz.

This follows at once from Corellary IT by writing

¢ (x)=f(x)—g(x).

By the aid of the theorem proved in § 44, the following simpler result, méy,
be obtained: .

If flz) > glx), and both are integrable in (g, b), fhen ¢\

& ) N
[ favte>{ glzyie. N
o - £
For, if fix) and g(x} are integrable in {a, b), we know. tf.};a.t Flx)— gz} is
integralle and has an infinite number of points of contipu}tg?in {2, b).
At nny one of these points f{x) — g(z) is positive, and the result follows from

Corollary 1T. ) \\:

48, The First Theorem of Mean Value.  Let ¢(x), V/(z) be two
bounded functions, integrable in (a,B); and let V(@) keep the same -
sign in this interval; e.g. let M@}@ﬁliﬂ](fbt‘é)xy_org_in

Also let M, m be the upperind lower bounds of ¢(z) in (g, b).

Then we have, in (@, b),~8°

Lvimzpla) = M,
and multiplying b’}@siie’fac’mr \+(), which is not negative,

A D mal{x) = Pplahd(x) = Mofr(),
It fouo;-\é,:f}om § 47 that
2\ b
~.§:\ n pioyto= | ez uf v

‘Si\i’ic’é Glanl(x) 1s also integrable in (¢, b).

e &

\V " Thercfore r H{m)() d:t::;zr W{x)dz

where y is some number satisfying the relation m = g = M.
Tt is clear that the argument applies also to the case when

Y{zy=0in (o, b).
If ¢(z) is continuous in (g, b), we know that it takes the value
p for some value of « in the interval {ef. § 31).

We have thus established the important theorem:
If ¢lz), yriz) are two bounded funclions, integrable in {(a, b), ¢ix)
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being continuous and \L(x) keeping the swme styn in the interval,

then j plapb(x)de= (& J- r(w)dr,

where & is some definite value of z dn a2 b
Further, if ¢z} is nol continwous in {a, b), we I_Jmm Pl &)
by p, where i satisfies the relation m = =7 M, cand o, M are the
bounds of ¢(x) in {(a, b).
This is neually called the First Theorem of Meun Valne. \
As a particular case, when ¢{z) 13 continuous, WM

J plzyde=(b —a)p(£), where n=l 100 (‘.‘t

N

It will be seen {from the corollaries to the theorem in \.ﬂ}h . in certain
cases we can replace a “E b hya < fU¥

However, for most apphoutlrms of the theorem, 1hc\@},ﬂ weneral slutement
in the text is safficient. ;.

49, The Integral considered as a I'u.v.{cﬁon of its Upper Limit.
Let f() be bounded and integrable in {&, ), and let

wwrw .dbrau)iprawy org.in

Fin) = 1) ds,
where 2 is any point in (a, B} N
Then if (& +4) 15 also m\the interval,

m\+h) Faoy=| " s

$ F(dﬁ +k)— F(x) = ph,
where m= g:e\« M the numbers 3/, m being the upper and lower
bounds of:f{‘x in (z, x-+k).
It fo’ﬂ}\vs that F(a:) is @ condinuous function of = in (e, H).
F‘urthcr i f{=) 18 continnous in (a, ),

Thus

I\ Flo +h) - F(z)=hf(£), where ©Z§&Z g 4h,
When & tends to zevo, (&) has the Hmit flz)
. Flx+hy~ F(z)
Therefore 1 PTRITANE
ki{% b1 Flo).

Thus when f(z) is continuous in (a2, b), j Flzyde o5 continmous

W (e, b), and has a differential coefficient for every value of « tn
{a, b), this differential coefficient being equal to f{w).

*CE. Pierpout, loe. cit., pp. 367-8.
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This is one of the most important theorcms of the Caleulus.
It shows that every continuous funetion is the differential coeffi-
gent of a continuous [unction, usually called 1ts primitive, or
indefinite integral.

It alzo gives a means of evaluating definite integrals of con-
tinwous Tunctions. For if f(x) is continuous in (4, b) and

Fy=| s,
; J N\
we kuow that ZE F{x)=f(x). Suppose that, by some means or
it 2\
other, we have obtained a continnous function ¢(z) suph)ha-ﬁ

£ gy =S (@). AN

. , »"\ &
We must then have Flw)=¢(x)--C, sinee ;};(F{«T) - px))=0 1
(@, b).¥ \\‘:

To determine the constant O, we use {ﬁ'e {act that F{z) vanishes
at x=a. \V

Thus we have .r fla)da = &Pfjﬂﬂl&}{&ﬁ{'y ‘org.in
a o3

50. 1. The Second Theoxjéﬁi'of Mean Value, We now cometoa
~ . 3
theoremn regarding thg{ﬁtegral [ ) Irla)dis ol which frequent use

will be made, eska{Nh in the more symmetrical form given in (1EI).
The proof is sigipler, wlien we bogin with the special case taken in
(1), where q‘:{is}iﬁé monotonic decreasing and never negative in (¢, b).

1. Let Gy be bounded, monotonic decreusing, wnd never negative M

(e, b)\‘\::@iﬁf let Al () be bounded and integrable, and not change s SUn

' -mo-a:e}?ea-n. ot finite number of times wn (4, byt

al
NS

3

\ Ther J‘b p(E) (@) o= pla) L (@) dee,

where & is some definite value of win @ ZE= b.
Since we arc given that yr(z) does not change sign more than a
definite number of times in («, b), we can take
@Oy, @y Doy oo Sob> a,=b,
such that 1(2) keeps the same sign in the partial intervals
(¢, a4), (&, )y ov @1y tho)-

*Cf. Hardy, fon. cit. (5th ed., 1828), 228,
tThis limitution will be removed in the proof of § 50. 2.
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Then .r(;)(x)xp(.r Yz = LJ. ()il
3 fip — 1

Now, by the First Theorem of Mean Value,

[ s #I ey dr,

r-1

fy—1

where $la, ) =, = Pplar)

Therefore fr ey (e do= 0, TFla}— Flee )i N

iy -} ¢\

where we have written F(z)~= ‘- Wiz dx A O

Thus we have rcﬁ(m) Jr() da",ﬁ_z‘ g [,y - If(f:,M&}\ ............ (1)

Since Fla)=0, we may add on thc term f‘((l‘.bl”) and we Tewrite
(1) in the forrs 4D

~N
r¢($ Iff(x)dl’: (‘;f’(a) ;“'I)F(a’ +Z |u1‘— \d ur ’E(a‘r 1) 1 H E ) ( )
But none of theseMtgﬂimﬂzﬁrﬁfﬂplg'Q@l F(b) are negative.
We may, therefore, replace the. right-hand suic of {2} by
M{{p(a) - ) -+ W) et (g = ) F gl ooeeeeeeess (3)
where M is some deﬁmte‘number between the greatest anl least of

F(a), F(ay), ... F(b), gl\cmnmdmg with one or other.
Since Flx)= j q’;(:z,)fh: we know that F(z) is contivuous in (& b)-

Therefore, fhere is a number & satisfying a = x = b, such that

ﬁ M=F() [cf. §31. 1)
It io ws from (2) and (3), that

Lo [ sy v@ao=sio) [ vy,

: »1\ where & is some definite value of ¢ in ¢= 2 = b,

i The correspondmg theorem for the case when $lx) is ruonotonic.
increasing and never negative in {a, b) is'stated in (I1). It can be

prove.& il} exaotly the same way as (I), or deduced from it by the
wubstitution y=8& -z in the integral

| st ve)ce

1. Lei ¢{) be bounded, monaionic incrensing, and never negative %
(@, B); and let \(2) satisfy the same conditions as in (I).
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Phea [ o6 v@ae=g) [ wiaas

where & 15 some definite value of xin e == b.
We now come fo the more general case where ¢{z) is monotonie,
but not necessarily of the sarme sign in (4, ).

IIL. Zet p(x) be bounded, and monotonic in (a, b} ; and let (z)
satisfy the same conditions as wn (1), - N\

Then jﬁ ) Prix)do= qb(@)f ol de 4 gb(b)r r(ir) d::*:{ ¢ \\\

.\’

where & is some definile value of zma =z =5,
Let ¢(z) be monotonic decreasing, and f{z)= ¢(q;) gb(b)
Then f{x} is monotonic decreasing, and never msghtlve in (a, b).
Using (I) we have

~NY
[\ farpiore=fia) [la)n

where £ 15 some definite value of z in ar_i =5
1t follows that WW{"db‘ -aulibrary .org.in

f M)Az dz= a,) 95 b)) .F V) die + p(B) r i) dew.
Thus L ) \;}(\x)".riw =gp{a) L V(@) dr + p{b) JZ Ye(x) da,

where £ is somedefinite value of sing =z =&

It gz i {ghonotonic increasing, we put f(z)=g(z) - ¢(a), and
use {11). AN

Th fo}m of the Second Theorem of Mean Value given in (IIl) is
the st useful and easily remembered.
~Bther modifications may be mentioned :

\JSince q‘)({r) is monotonic in (@, b, p(a +0) and ¢(b ~ 0} cxist. Also

we may give g{x) these values at =a and =5 respectively, without
changing the monotonic character of ¢(x), or the value of the

int-cgral .
[ sy
We thus obtain the theorem :

IV. Let g(a) be bounded and monolonic wn (4, b); and let \f(x)
bounded and integrable, and not change iis sign more than o ﬁm(e
nuwmber of times in (, b).
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(3 : \
Then rfj;(a.:)1[;($)rf$=*P(ﬂ-+0)[£\,f’(-‘f') o i (b “?_l‘: Irlryd,

where £ is some definite value of ina  w b*

Also it is clear that we can in the same wuy replace ¢la+0)
and (b —0), respectively, by any numbers A and B providefl
that 4= ¢la+0) and Bg(b—0) in the case of it monotonie
increasing function; and 4::¢(a+0), B (b -0 w the case of,
the monotonic decreasing function.

We thus obtain, with the same Limitation on i} wid 1,’/(%'1?’313
before,

'\

Ny
3 b

V.o [emveie=al s+ B[ oo
it 11 L %€ 2
where A = ¢la + 0) and B = d(h-0), if () 15 mo l?fﬁz}?h i ne J‘{?(I.S’lzﬂﬁ :
and A= pla+0), B=glh-0), f $lx) & modelonr decrensing,
& being some defindte value of xina =3 b7 N4

The value of £ in (I)~(V) need not, ef-eirse, be the same, and
in {V} if will depend on the values chogenfor 4 antd 5.

Theorems (1) and (II) are the earliess form of the Second Theorsm
of Mean Value, an‘flwa\’féﬂ?ﬁfé‘?%::%ﬁa%ﬁ% by whom they were
ampleyed in the discussion offt;he’Theory of Fourier's Series.

Theorem (IT1) was givefi\by Weierstrass in his lectures and du
Bois-Reymond, indem}ienﬂy of Bonnet.

t 50. 2. In the proef &h}e Sucond Theorem of Mean Value given i §50. 1

{ it is assumed that 't‘,lu;‘: wecond function () does not change sign more than &
!I finite nuriber ofitifps in the interval {a, b).

In this sectionve show that this restriction is unnecessary.

' T owill bNu oient to prove {1, as the ather results (T1)- (V) follow dircetly
Al from (L\ -

1. 1e!;}{;(x) lie bounded, monotonic decrensing, and never negetive in {a, b): andd
{e.f.\'\,f/{ﬁ} be bowunded and nlegrabdle in (e, ).
Wl &

\ ‘;“j“?w?a

" .
|, derpiz=gia (v,
where £ is some definite value of © in 2 = 2= ;‘f

Let the positive number ¢ be chosen, as small as we ploase,

*Corresponding results hold for (1) aud (IT):

i}
| er | otrptertaaguro |
! takes the place of ().

¥leyde, atmgZid,
&

. J;M ém. cour. Acad. roy. Brugelles, 23 (1850), 8; also Jowrnal de Math., 14 (1849)

{Journal fir Math., 69 (1868), 81; and 79 (1875), 42.
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There is a mode of division of (a, b}, say
X . =2 Lpp Tgs o on Ty 1 x-n,:ha
such that for 1t

the sumn & for o{xyf(x) .H\ dlx)d(E)dz + ..
2 e e (1)
and the sum s for gilx)(e)> \ b)) d — e J

alyo the sum & [or ¥ -x\ Yix)dr + q':(ra ..

gnd the sam s forr(x) = ia (i} d _:bUT)

{”\'
<\}
Let o _2, el e, Mo %) Ve \
W
: S
—_-‘-\..;‘.J{)(x-r)crs where C-r'_‘\}[/(xv}(x'r-;_l_mr)r \
v ,,\"

N
e dylmg) T <p(xr)(ri —d,_;), where d;= cu+cl-+}
=dy L) - '4'5 2,014 dy [olg) — b {w)] 3
+dy 2[¢={xn S xbtxn_l)m,,_m»:n_ W)
None of the multiplicrs of dy, dy, -+ €y i aye negative.
Let d,, and d, be the smallest aﬂd\h@hmﬁﬁ;bﬁwy drgrin
Then we have ‘m \
l2[¢ -l mn+¢(x r;} a—d,,j 2[#3(%) 4a(xr+1}]+dl(xﬂ_1) &
i.e. &»‘\ ddhla) = U_d@(a) ............................. (3)
Thus o= #u(a \&@w;e )¢ is some number satistying i, = p =y

Now di)-_Scr ,Z/V R ICRPEES
Q‘
'l'hcrcfere:\t,he. sum s for Wiz} for (T, T e 7 d, = the sum 8 for
W) ar (Fp e - ps

A‘n‘&\‘ ERR Vrix)dx lies between these numbers s and 8.

M\):\ —‘ﬂso ‘~ — &} for \,E;{J.} for (g, £ps -o- Ty 1} (8 =) for W‘Hx) for
\ (xn, x]."' ﬂ}{d{"! } ( )
" (TP ooy e €
I'hersfore dy > .\-(n Prlayde F (4)
. g 2e
and similarly g < .\f-H Yla)dz+ Pia) J

Therefore, by (3) and (4),
qJ(a)\ P oy - 26 < dyepla) T r g h() < \a Tl g iaydi +2e. ... d5)

But the sam & for
G} FOT iy Zye oo Ty T o7 T bHO SUIM § for G(z) (2} for (e T o Zak
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o .
Therefore by (1). l(r—\ e} de g

and (T—E(; ) I T T N
Therefore by (5 '

¢(a}r“+1w(x)dx—3c4u--m\ Pl (@) die e

al ™t e b e e 8)
g7 i : N
Let M, m be the largest and smallest values of \ iy i e B \

a Ke
Then i cx}\ R Vrie)de 5 miple}  and <|f)(u)1xq-'_1 Wiy Moy,

. g %
Thus we ha\’e from {6}, ~

b oM ?
meplat) - Je 4‘ Plx)gieide < M)+ ';i;'\‘
i ¢ 3
And it follows that }

(e} _\ e r{zide = 11"1,@
Hence \ )iz da- -q;{a)\ u\s)dx,

where { is some deﬁmte value ofzina : 5 % =
W dbrau'ubrary org.in

INFINITE II\TEGRAL‘B WINTEGRAND BOUNDED.
IN‘I‘ERVAL INFINITE.

51. In the definition 0{ the ordinary integral j flz) dr, and in

the preceding secmés@of this chapter, we have supposed that the
integrand is boudded in the interval of integration which extends

from one gw&n\pomt a to another given pomt b. We proceed t0
extend thlsﬁeﬁmtlon 80 as to include cases in which

(i) 'b]{amterval increases without Hmit, .
(11 ’\he integrand has a finite number of infinite discontinuities.

. Tntegrals to + 0 . rf(x} dx.

Let f(x} be bounded and i-Megraﬁle in the interval (a, b), where

a is fived and b is any wumber greater than a.  We define the integral

L f#)dz as 121; r Fl@)dx, when this limdt existsF

*¥For the definition of the term “infinite discontinuities,” see § 33,

11t is more convenient to use this natation, but, if the presence of the varisble &
in the integrand offers difficulty, we may replace these integrals by

! fhdt and hm‘f(#)d.t

=g |
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We speak of \ f(x}d.‘n in this case as an ufinile iniegral, and say that it
converges.

(On the other hand, when \ Flx)dx tends to @ as x>, we say that the
infinite integral ‘ Sixz)de dwerges 0 oo, and there is a similar definition of

divergenre to — w of \ flayda.

Ex. 1. J e“dr=1; j @:::2.
o &t N\
For [ e~ dr = lim [e—’dzz lim {1-e=)=1. e\
Jo e Tt { N\ “
And j o tim jdﬁz tim 2(1 -L)=2. N
: y X x—m ), g7 w—w® ¥ AN 2
- o (&
Ex. 2. \ edr=u0 ; \ .‘_‘7‘5 =at. "‘\
For \ edr= lim [a‘dx-llm&‘ﬂ—'
T—+0 g r—\
Jim {* dx _
And l - B2 Y 24z - 1) =ce.
Vx ""Wwb{ eﬁ)ré’ﬁ"]mbt “ary.org.in
Similarky \ log - dx— ~a= _ I_z——oo
Thess intograls diverge to HOF - , ag the case may be.

1"1111]Iy swhen none of /fhese alternat.wes oceur, we say that the infinite
integral ‘ . f Yz os«ztes finitely or infinitely, as in §5 16 and 25.
Bx. 3. O \ sin z dx oscillates finitely.

A\

x\ 4 r:r sin » dx oscillates infinitely.
b
H\\Integra.ls to —0. [ £(x) dx.

O "When f(x) 15 bounded and mtegmble in the interval (a, b), where
\ b is fized and @ is any number less than b, we define the integral

j Jle)ds as li hm l- flz)dz, when this Limit exists.

We speak of ‘ f (z)dx as an infinite integral, and say that it converges.

The cases in which \ flx)dzis said to diverge to « 0rto — oo, OF to oscijlate

finitely or infinitely, are treated as before.

Bx. 1. _in_f’“"'f“;:” I, (I'Q—‘xgaﬁl—y
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Ex, 2. \ o

b diverges ta = .

“u)
\ sinh z de diverges to - =

Sil
\ sin e oseillintes tinitely.

4]
\ a sin rdr oseillates intinitely.

TIL. Integrals from —co t0 oo [ f(x)dx O\
ul :.'\ i
If the infinite integrals j' flaydeand j Floydr are fm! &m}{m‘prgem

we sagf that the infinite mt’eqm? }.

Jlxydr @y rmucrq&@‘ Jamd is equal
to their swm, e

w 4

Since [f(;n)d.zrr:_“ Sflxyda +j fr)dxx:\\a« -

it follows that, if one of the two mtegE'Ed { sydr or [ fleyda
converges, the other does. i -

sy db 11bl3§‘"’3’ OTgN
Also [ flaydz= .f(x)dx +j floyda.

smilaly, | e [ oz | fayde, vz

and, if one of the m\integmlsj Jix)dz or j
the other doeg.¢

Ao :;}"'j_mf(x)dx:jimf(m)dx +j fia) da.

T]R‘\S ” r Sflz)da ;kr.f(o:) (Z:c:r Flzyde +Iﬁf(.1c) du,
a \%md the value of )

JSx)de converges,

€L

f(2)ds is independent of the point & used in
\the definition. -
I‘sx, E‘r l—zi{l;:zﬂ_-“h-, i” e—ff-‘gzx;:2in c—xad:c.

| 52. A necessary and sufficient condition for the convergence
1ot tws.
' Let Flz) :r Sleydax,

The conditions under which F{a) shall have a litit as z—>%
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have been diseussed in §§27 and 29,1, In the casze of the infinite
integral we are thus able to say that:

1. The integral r f(z)de is convergent and has the value I, when,

any positive number e having been chosen, as small as we please, there
is a positive number X such thot

I—r f(a:)da:‘ <e, provided that o= X.

And further: A
II. 4 mnecessary and sufficient condition for the convergentd of

Q

the integral J Slw)de <8 that, when any positive ﬂu-mbgft’:g\;’aas been

chosen, as small as we please, there shall be a po{t&we number X
such thar \v

7 7| <oy
Jor all values of &', " for which x'' >z ,_z)f
We have secn in § 51 that ﬁft{?f@)‘&mlm‘m@m ithen
r f(z)dx:ﬁ Jf@z{f}}é +r fo)dz, a<a.
It follows froﬁ (D t]:ia@“lif' : f(x)dz converges, to the arbitrary

- ¢ ) .
positive number e *t]ﬁefe corresponds a positive number X such

that H. j(m)dwl <Ce, When x= X,

A

Also, if this.dondition is satisfied, the integral converges.
These results, and the others given in §§ 53-58, can be extended
immediately to the infinite integral

N,
S

AN j f(@)a.

AN
h

53. wa(x)dx. Integrand Positive. If the integrand f(z) is

positive when ¢>>a, it is elear that J f(z)dz is a monotonie in-
i

o
treasing function of z. Thus I JSiz)dr must either converge or
diverge to w0 . “

L It will converge if there is a positive number 4 such that

Lf(“’)dw<A when x>>a, and in this ca;sej fla)de = A.
[/
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It will diverge to o if there is no such number.

These statements follow from the properties of monotonic
functions (§ 34).

Further, there is an important “comparison test ” for the con-
vergence of integrals when the integrand is positive.

L Let f(z), g(x) be two functions which are positive, bounded and
integrable in the arbitrary interval {a, b). Also let g(x) = flx) whet\

zza. Then, if j f{z)dz is convergent, it follows that J gz, is
& L\ T

convergent, and rg(x) de= rf(z) dz. '

a o P

For from § 47 we know that A

=\
ﬁg(m) 27 Lf{a:)u’,m, whfgg?a

¢ N

Therefore r (@) do< r @iz, &)
Then, from (1), }fg@mglﬁﬁﬁkgm
) 1 SN

L If gle) = f(2), a%d,rf(':c'}da: diverges, so also does
A

\\ / rg (z)dz.*
This follows b once, since r glz)de= r f(@)dz.

Oy 4 0
Onegf"‘hh’e most usefnl integrals for comparison is I i%g , where
19

a>0.0\
. B % dx 1
o “{We have L 715 @™ -a, when asl,
\ )
and

® dy
L—:E:logw-loga, when n=1.

*Bince the relative hehaviour of the positive i
positive integrands f(z) and g(x) matiord
only as 2>, these conditions may be expressed in tirrms offl(iriits: “

\ When g(2)/f (z) has a limit as 2>, l=°9‘ {¥) 4z convergos, if rf (z)de converges.

‘Ihen #{x)f{x} a8 s Yimit, not zero, or diverges, as raw, rg{z}dx diverges,
i Lf (z) dx diverges. *
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. "z dx al~n
us, when n>>1, Im} ="
Th ’ - T+ o @ ™ n- 1’
. {"dx gl
e | —=—on
€ e n-1
[T dx
And, when n=1, lim =@,
0 da T
(o0
2.6, | — diverges. Q)
)z e
Ex. 1. r__dr CONVErges, since ——-1——~<—1~ whenxadﬁjo\
L/ +a% 95 v’[l+a:3] & ra\
* da . . l ’;::’
2|, Ao, since e n # "YE
L} - 3. &4
3. [a 312:: dx comverges, since Bl:f = x_” whe?s} Za>0.

54. Absolufe Convergence, Lle {nteg&t:rf(x) dz is seid fo
\
be absolutely convergent when f{z) wbounded and iniegrable tn the

arbitrary intervol (e, b), and F{’ﬂdﬁ del monuergend.

Since H f(“")dm[ I 1) de, for xn>m(;a§47 Cor. I,

it follows from § 52,1 .II\t:ha.t if I | f(z) | dr converges, so also does
N\

[ 1.

But the, cbnverse is not true. An enfinile integral of this type
may mvé?yé and yet not converge absolutely,

F Ol\xample, consider the integral

) J’ smx .
‘N 9 @
\m V" The Second Theorem of Mean Value (§ 50. 1) shows that this

integral converges.
For we have

o
j ﬂxdﬂ:——’[ sma:d:c+— _[ sin x dz,
¥ T £
 where 0 < 2’ sé=2".
But

¢
sinxdxi and 1r’sina:dmlareeachlesstha.norequaltol
o &
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8in 7 1 1
Therefore L — dw 1,_2{ o
4
< e
€
Thus r Sn;xdx] <, when "= 2" A4,
. N
4
provided that X>-. A
¢ (\H
Therefore r Egg_g dx converges, and we shall find ‘3{1:\}}88 that
0 & ~.‘
its value is 4o, D
NN

© [
But the integral j Is 1_2_:@ de diverges. a0
0

To prove this, it is only necessary to co'g‘s\iﬁer the integral
Iﬂﬂ‘ lsi_n xi d ::'\
0 2R -,
where n is any posijiye, g:ﬁ,ggmbmry org.in

We have r M&c - zn;rr M dx.

F-tm
T \ﬂ wi " sin
But [ g, [ siny
“ t,g@ " o = Tjm 4y %
on puftting :z:———('r SHr +y. v
Theref j”’“ |sin z] i }r .
er ore\ e T > ,siny dy
O 2
R\ Z
Othus r” leinz] 21
) o dx>7r 21‘ r
But the series on the right hand diverges to o as n-»w0 .
Therefora .Iim J‘Z“ }—ym?ﬂ dg=co-,

But when z>nr,
? |sin 2| = lgin @)
B gy [ 190 2]
[P S P

Therefore lim J' sina) . _
X Pt o]
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When irifinite integrals of this type converge, but do not con-
verge absolutely, the convergence must be due to changes of sign
in the integrand as x—m.

55. The ;-Test for the Convergence ofj f(z) dx.

I. Let f{z) be bounded and iniegrable in the arbitrary inlerval
(¢, B) where a=>0. If there 1s a nwmber y greater than 1 such that

zef(z) 28 bounded when o = a, then I Jlz)dz converges absolu;&lg(.

Here |z4f(z}|< 4, where 4 is some definite positive muimaber and
= a. \

A
 { )

4 A
Thuis |f(:v)[<@. \\

© d'-x
Bug we know that | — converges.
oV
It follows that.‘. | f(:r | dz convergeg \

Therefore J- flz)da convergesy. ahéaﬁhj&wsrgeﬂpe is absolute.

I1. Let f{w) be bounded mﬁd mtegmble tn the arbitrary nterval
{a, b), where a0, If tkeré s @ number u less than or equal fo 1

such that 2-f(x) has a iptﬁ:twe lower bound when v = a, tkenj. flz)de
diverges fo o, \\
Here we have{ s before,
N z#f(r) = A>-0, when z=a.
It fc%oﬁs\;hat 4. fiz)
Bu:t i—f diverges to o when p= 1.

S M o
\\: "It follows that J. flz)dz diverges to .

IIL. Let f(z) be bounded and integrable in the arbitrary interval
(@, b), where a>0. If there is @ number u less than or equal to 1

sueh that z¢f(x) has @ negative upper bound when t=a, tke’ﬂ-j f@)de
diverges to —w ,
This follows from {II), for in this case
—o#(z)

must have a positive lower bound when ¢ == 4.
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But, if lim (a#f(x)) cxists, it follows that wf(r} @ hounded in

I

- z=a; also, by properly choosing the positive nunder X, m”f(:c)
will cither have a positive lower bound, when thix linit s 'posii?we,
or a negative upper bound, when this limit is negutive provided
that ez X.

Thus, from (I)-(IIT), the following theorem can e imnediately
deduced:

Let fiz) be bounded and integrable in the arbitrary intereal (6€0),
where >0, T

'\
If there is @ number u greater than 1 such that hm (r\‘f{{)) axists,
oa T ey
then I flaydz converges. RS
13

If there is a number p less than or equal to 1 sach that i (v ()}

0
extsts and 15 not zero, then j

p \' PR
fleydz diverg{fs‘;.\awd the setine is irue
iff 2*f(x) diverges fo 4+, orio -, as xw;o . B
We shall make very frequent us?’;of t}lzlgs test, and refer fo 10
as the “u-test.” It"‘iﬁ“’cﬁgﬁu‘&ﬂﬁﬁl&%gﬁe simply comparing the
& 2 ~‘, ’ L
integral j flayde with the integral I g‘z, and deducing the con-
“w o\ @ 5
vergence or divergence {oﬁthe former from that of the latter.

ES xﬂ - . i 2
Bt | g Sonvesge,sinca lim (a2 x o ) =
i P 9
T R Nl T tnee lim { - ___-‘Ld__)_
Sn Gl @ diverges, - sinco tl_u:;(x ) T b
N\,
p (& z . . . 1 zh 1
%ﬁ\a P r dx diverges, since Q}}g‘; (:t 1y 53521_?) =g
¢ Ltr é‘f\m}ld .be noticed that the theorems of this section do pot apply te the
Ontegral | =2 %az,
‘o

56. Further Tests for the Convergence of r f(x)dx.
i

L If pla) is bounded when »= a, and inteqrable in the arbitrary

interval (a, B), and j V(@) do converges absoluicly, then .‘-w planp(z)dz
18 absolutely convergent. )

For we have |¢(z)|<< 4, where 4 is some definite positive
namber and = 4.
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Also | 1ol oo 4" s

when «'">a'>a.
T

Since we arc given that J. |'\fr(z)]{dz converges, the result
follows, ¢

Ex. 1. \ %nif da, 1. jﬁiidx converge absolutely, when #n and gmare
positive. A

- AN
2, ¢~ cos bz dx converges absolutely, when @ iz positives

- N/

L ¥

3, \ T oog W 4

aﬁ_j,_ ]

II. Let ¢(x) be monotonic and bounded wfwntc\>a Let +J(z) be

bounded and integrable in the arbitrary intervaglle, b), and not change

sign more thaon a finde number of limes’ W the interval.  Also let

o \\
J. Ylw)de converge. P\

v
13

dx converges absolutely. \

ATATANS dbl aulibrar y.org.in

Then }. pleht (o) de comergss
This follows from thg Second Theorem of Mean Value, since
o < s o
[” str@ib= o] verzs e s,
> L & 5

o 4 o
AN
where gz = ‘,E\cc”.

But [ofz’ )J an(‘i |¢(")] are each less than some definite positive
number 4¢

Also, Qc,\an choose X so that
O : »
J"\ J Vr(x)de| and JI (AEH a’m‘

~ {5‘3 each less than /24, when &">#'= X, and ¢ is any given
\ positive number, as small as we please.
It {ollows that

| s@as

and the given integral converges.

<g, When " >2'= X,

Ez. |, i SR xdx converges.
il

2. } (- )eosxdx converges when a > 0.
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IIL. Let ¢{x) be monotonic and bounded when x _ a, und
Hm ¢iz}=0.
Let \r(z) be bounded and iniegrable in the arbitrary ivicrral (a, b),
and not change sign more than o finite number of times in the interval.

Also let r\}/{a:)dx be bounded when .

Then rgb(x)\b(x) dx is convergent. .

)y
As above, in (IT), we know that N\ ¢

g
L}ja(x}q;(m)dngb(x j \p(a:)dm +¢(z”)j w’;(z . )

\.
where a<a’ = £ =¢".

But I‘!’(@dx‘<A when z>a, where .{L‘is some definite

poesitive number. \ ;
| [y J%amm sl v
§~2A-
Similarly H\ljz,(x de| < 24.
Also b ‘\\ Hm ¢(az)=

Therefore, if ey any positive number, as small as we please,
there will be/a positive numher X such that
&/

\§ lp(@) | < ﬁ, when z= X.
:I{fﬁﬂows that
~ s

and r(p[w)q,(x) dx converges,

<le, when ¢'>1' = X,

Ex 1| 227 g, ("cosz
= L. d converge, when n and a are positive.

. L 17 zé B0 @ d2 converges,

3, Smcosru—cnsba:
q

. p de converges,
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The Mean Value Theorems for the Infinite Integral.
&7, The First Theorem of Mean Value, '
Let hix) be bounded when £ u, ond infegrable in the arbitrary interval (a, &),

Let i) keep the same sign n T=a, and ( -w{x) dx converge.

S

Ther " pepimde=p | v,
where m == w = M, the wpper and lower bounds of lx) in x = ¢ being M and m.
We have m= ${x)=M, when vZa,
and, if ¥{x) =0, N
) = i) Sz, o
Phorefors m | W(eyde = | ple)plarde = M| pe)ds, when ¥ Za }
] N iy Jet ) ’\' £
But, by §56, L E plalf{a)ds converges, and we arggiven that
.\g';{:c)a'a; CONVETEes. , \\;
Thus we have from these inequalities \ h

o] st =| denpmr = | QoY

Inother words, | SOETHINER org.in

where m = = M. \

58. The Second Theorem of MeanValue.

Lmas, Let | flw)ds bea ‘wmié%em integral, and F(x) -—-E flm)du(z=a)
Then Flx) is cc«ﬁ-t-i:-‘a-uous whin 2= a, and bounded in the interval (@, o} Also
it takes at Teast once in thabanterval every value between its upper and lower
lounds, these betng incluied:

T'he continuity of P§e] follows from the equation

W Py
‘ s.%“ Fla by - Fx)= - L flz)dz.

Furtherz\.lﬁp& F(x) exists and ig zero.

Tt 86w from § 32 thut F{(z) is bounded in the interval (g, © ), 55 defined
in that\dection, and, if 3, m are its upper and lower bounds, it takes at least
once in {g, o} the values M and m and every value between M, m.

Let ) be bounded and monotonic when = =a.
Let yix) be bounded and integrable in the arbitrary interval (@, B, and not

change sign more than ¢ finite number f times in the inferval.  Also le! L\Hx}dx
COnvErge,

Then _jr!:(:c)\’f(z)dxmb(a +0) Si {z)de 4 d{eo ) L Plx)de,

where a 2 LS o ¥

*Ci. Pierpout, loc. cif., § 854
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Suppose $(x) to be monotonic increasing.

We apply the Second Theorem of Mean Value to the arbitrary interval
(s, b).

Then we have

[ gterpte)e=gia 0 piarde s gib- 0] yiate
where e = £ =b.

o
Add to both sides B=¢{= )i V{z}dx, ¢\
obeerving that ¢(os) exists, since ¢{x) is monotonic increasing in x=q an\d
does not exceed some definite number (§ 34). ) \' N .
& \/
Algo lim B=0and i P{eni{xdx converges 1§ 56, 111 PAY
) AN\ 3
Then B+] e p(a)da ~f\§'

=gla+0)|] wiatz £ 400’ n,bfzdrw(ao»{vtx»tz)dr

=a+0)] | olda- [\p{x)d:]w(b E)\U Yo - | Yoy ]
+¢(m;\ gla)de

WO dbrau]lbvéry org.in

=@+ 0| Pade + U4V, oo m
where U= (¢E§\mo] - q5{a+0)}!e Y{z)dz,

and

) w
&bte) - 46 ~03, Vie)de

Now we know fmm bhe above Lemma that g Viz)dz is bounded in (g, ® ).
let M, m be,\ upper and lower bounds.

Then | ()"
N m=| Va)z < ¥,
1 2 m=| Yy,
{ o\;Tﬁerefore {B(b-0) - ¢(a+0)}mf~Uf{¢;(h ~0) - Pl -+ O)M,

P} —~Plb—0Nm= V= {d(x) - pd - M.

Adding these, wa see that

9l )~ Pla+Mm= U+ V = (d{w) - bla+ O} M.

| U+V=pldg{eo) - ¢(a+0)}, where m=p= M

L eert thip vaiue for U+ in (1), and proceed to the limit when b= .

| T yee= dla-+0)] Vi) uigle ) - o+ O),
* where p ].l.mp‘.

Therefore

b_bT::m hrmt muest exist, since the other terms in (1) have limits when
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Also, sinee m=p
it follows that m=y

M’
=M.

Pl
But [ Yr(z}dx takes the value p” at least once in the interval (a,-o0 }.
Ry

!

A A

1A
|

f

[ 2]
Thus we may put u’ =[ Y(z)dr, where a = = w,
3

Therefore we have finally _
[, semimrn=pia+of] pierte s st viora, N

where a = £ = w. A
It iz clear that we might have used the other forms (ITT) and Q’), 3 50. 1,
of the Second Theorem of Mean Value and obtained corresponding'results.

-\
NN
< 3

INFINITE INTEGRALS. INTEGRAND H\JE"IMTE. |

b N
58. | f(x)dx. In the preceding sections™wé have dealt with
P

the infinite integrals J flxydz, r f@@}'andf flz)dz, when
) —G —n

the integrand f(z) is bounded in gny-arbitrary interval, however

large. Wwy,db;auljbl'ar .org.in . .

A further extension of thedefinition of the mbegral is required
50 a3 to inelude the case in which f(z) has a finite number of infinite
discontinuities (of. § 33)4n the interval of integration.

First we take theledse when ¢ is the only point of infinite
discontinuity in §d,8). The integrand f(z} is supposed bounded
and integrable\ in the arbitrary interval (¢ +&, B6), where
ea+i<h ) \

On t-hiMderstan&ug, of the integral I i flx)dx has o linut as

O y o .
£ -»We define the enfindte integral J. f(x)da as ];33[ v Sz da.
0\ & ]
oBiilarly, when the point b is the only point of infinite discon-
“NWnuity in (a, b), and f(z) is bounded and integrable in the arbitrary
N\ tnterval (@, b~ &), where a<b— &E<b, we define the infinite integral

b b & ..
J.f {z)dz as lim I fla)dz, when this limil exists. ]
2 0da o 5
Again, when a and b are both points of infinide discontenuity, we §
b - - .
define the infinite integral I J{z)da as the sum of the infinite integrals

Icf (x)de and J‘£i fl@)dx, when these integrals exist, as defined above, ;
¢ being o poing between a and b.
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This definition is independent of the position of ¢ between a and
b, since we have

j:f {x)dz= E: fl@)de + E fla)des,

where a<<¢’<¢ (cf. § 51, III). o
Finally, let there be a findte number of points of infinite discon-
timuity in the snterval (o, B).  Let these points be iy, va - T wheres

A By, .. <Tp Db, We define the infinite tategrd ‘ f{ar);lf@?;
the equation TN

),
d

_r;f(fb} do= jff(:c) dz +-Eif(m) dr+..+ L)f(f)tr?'r', ;

when the integrals on the right-hand exist, accordiig W the definitions
Just given. O

Tt should be noticed that with this definifioh therc are only to
be a finite number of points of infinite¢@iscontinuity, and f(z} I8
to be bounded in any partial interv@lzéf {a, &), which has not one
of these poiuts as an interval pointidr an end-point.

This definition was eﬁeﬂe&%@&é@ﬂgﬁxmﬁrﬁ&d, Dini and Harnack £0
certain cages in which the integrand\Has an infinite number of points of infinite
discontinnity, but the case givefiNn the text is amyply sufficient for onr purpose.
The modetn treatment of pheititegral has rendered further gencralisation of
Riemann's disenssion i&'ﬁy of historical interest.

1% is convenienb to speak of the infinite integrals of this and
the succeading &ection as convergent, as we did when one or othet
of the limifg\of integration was infinite, and the terms divergent
and osgillatory are employed as before.

N\ b
S?t;}e\irlmrs 86 the term proper inlegral for the ordinary integral \af (as) s
when fi2) is hounded and integrable in the intervel (a, b), and improper iniegral

“for the case when it hes points of mfinite discontinnity in (, b), reserving the

Yerm infinite integral for

-

b T =
‘af {x)az, i fiz)de or S flz)de.
" M —-m
Frenck roathematicians vefer to both as intdgrales généralisées; Cermansd

refer tc both as uneigentlicke Fnlegrale, to distinguish them from eigentliche
Inegrale or ordinary integrals.

60. | "t ax. jiwf(x) dx. ﬁmf(x) ax.,

_ Let fl(x) have infinite discontinuities at a finite number of points
n any mterval, however large,
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Tor cxample, let there be infinite discontinuities only at
Ty -rv T 10 T 72 @, f{z) being bounded in any interval (e, b), where
6> T

Let ’ O =By Ly, oen <L, <D,

Then we have, as above (§ 59),

raf'{:r) czx:j:‘f(x) do +I f@) A+ +r Fla) o +r CL
where #,<Z¢< b, provided ;ha’s the integrals on the rlghﬁ:haJnd
side exist. A\
It will be noticed that the last integral J- Sflayde 1§aﬁ “ordinary
integral, fiz) being bounded and integrable ;n (e, Q)\ ’

If the integral f(x) dx ulso converges, we deﬁne the infinite integral -

NG
J J{xydx by the egmtwn \\
I () d’:c—[ Six)de f(x da:-k. J flz)da +J flz)d,
© Zwwi dbraulibldry org.in

Tt is clear that this definitions ‘independent of the position of ¢,
since we have \\

j fa")dxj,f\fx)dxﬂ_‘[ fizyde krf ydz,

where @, <6<cl, \\
Also we may, wiite the above in the form

:R;"(;;dx-_— j ") du +r’f(m) de + ... +r flz)da.

The%erbal alterations required in the definition ofj. fl@)dz

."\ -
~“\are obvious, and we define j fix)dz, as before, as the sum of
y -0

the Tntegrals '[ fi f(z)dz and I: flzydz.

It is easy to show that this definition is independent of the
position of the point a.

b .
61. Tests for Convergence of j fx}dx, It is clear that we

need only discuss the case when there s a point of infinite digeon-
tinuity at an end of the interval of integration.
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1f z=a is the only point of infinite discontinuity, we have

If(x)dz lim Lﬁf(:r.)dx,

4
when this imit exists.
1% follows at once, from the definition, that:
1. The mtegml'j f@)dz is convergent and has the value I when,

any positive number ¢ having been chosen, as small as we please
there 1s o positive number u such that )

]
I a—I flz)dx
a+E
And further: (4,
"\
1. 4 necessary and sufficient condition for e convergence of
h p
the z'ntewalj f(x)dz is that, if any positive nww ¢ has been chosen,

as small as we please, there shall be a posmw number n such that

!‘z +8 f(%)#a&‘dﬁaauwm Dergin & = g,

7 A
7NN ¢

<e, provided that 0-&.7n.

2

Also, if this infinite mtegraL!.’ (o) dz converges, we have
[ f{x)dw{_[ f@as + [ fi@)ds, axca<.

It follows from (T} that, 1fj fl@)ds converges, to the arbitrary

positive numher £, there corresponds & positive number 7 such that
O I #rae

'A‘hsii‘lute Convergence.  The infinife integral I Flaydz is said

<Ce, When 0<(z~a) =7

\‘0’ be absolutely convergent, if f(a) is bounded and integrable n the

arbitrary interval {«+£, b), where 0< & <b—a, and _‘- | flay| d
converges.

If; follows from {II) that absolute convergence carries with it
ordinary convergence. But the converse is not true. An infinife

wntegral of this kind may comverge, but mot converge absolutely,®
a8 the following example shows.

*CL. §43, V; §47, Cor. I; and § 54
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An example of such an integral is suggested at once by § 54.
[ gin 1fx d

o &

Tt is clear that

converges, but not absolutely, for this integral is reduced to

r’ smxdx
1
by substituting 1/x for .
o bode .
Again, it is clear that [ Gy converges, if (<n<1, Q.
ol g -
For we have O\
% dz 1 'S\
v - - gt Elrmy N
L+£ @-af* 1l-= {o-a) : }‘
4 dx _(b—-a) AN
Therefore IlmI , when O<n<1.
f—il Jaté (- a) 1- .»‘}

Also the integral diverges when = 1.
From this we obtain results wbnch\ ‘correspond to those

of § 55.
IIT. Let f(x) be bounded apd. ¢ a{alg wn the arbitrary inferval

rar

(@ + &, B, where 0< £<<b—a. I ikemwanu ?gyj})etweenOandl
such that (z-apf(x) is baumfed when a<<x=b, then _[ Jizydz

converges absolutely.

Again, o)

IV. Let f(x} be\l{}mnded and integrable in the arbitrary interval
(@+& b), wherd < &<b—a. If there is @ number yi greater than
or equal to 1 sucﬁ that {z — ay-f(z) has @ positive lower bound when

fi
a< z 1—'})\'01‘ a negalive wpper bound, then [ Slz)dx diverges to +o0 i

o
the fiksh case, and to — oo in the second case.
SAnNd finally,

PR

V) ) V. Let f(z) be bounded and integrable in the arbitrary inlerval

@+ & B), where 0= E<<b—a.
If there 1s @ number u between G and 1 serck z}m lim (’3 ayf(z)

z—+ 40

extsts, then I Flx)dz converges absoluiely.

o
If there is @ number p greater than or equal to 1 such that

b .
Lim (2 —a) flr) exists and is not zero, sfe.en[ flzydz diverges; and
ot 40 Je
the same 4s true if {x - a)f(z) tends to +o, or o — o0, a5 T4 +0,
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We shall speak of this test as the p-test for the infinite integral

b
If(x]dr, when z=a is a point of infinite discontinuity. It is

2]

clear that in applying this test we are simply asking ourselves
the order of the infinity that oceurs in the integranc.

The results can be readily adapted to the case wiwn the upper
limit b is a point of infinite discontinuity. ~
Also, it 18 easy to show that
VL If ¢{2) s bounded and integrable in (a, b) £ \a?zd
5
y&(m)dw converges absolutely, then j planf (z)de w ubsolutel i
con*uergent {Cf. §56, 1) ¢

The tests given in (IT11)-(VI) will cover most oOf ‘blh, cases which
we shall meet. But it would not be difficult_towdevelop in detail
the results which correspond to the other ﬁé}ts obtained for the

convergence of the infinite integral I fi {sn) d‘:r

i

No special discu%mq_(jgrmqtajw,zﬁgﬂthe integral j flz)da,
R\ &

when a certain number of points of infinite discontinuty ocour

in {(a, b), or forj f{m)cﬁc\" flx)dz, an&j f{x Ydz, as defined

in §60. These inte Bls all reduce to the sum of integrals of the
types for which we\have already obtained the required criteria.

We add some\examples llustrating the points to whick we have
referred.

'\'..
Ex 1 \R;me that \ Nirs ]  COnTerges and that {“ ] :b: diverges.
i) 'bet e
N :{\ \ f@=g TovE
) e lim Vi f(2) =1.
The p-test thus establishes the convergenee of i .
. o (T F-@)ve
(i) Let fay=-, L.
I
Then 2L +7)

limzfin=1.
w-+} .
Therefore the integral diverges by the same test.

7 sin e
Ex. 2. Prove that .\0 Rt dx converges, when 0 <n <1,

The integral is an ordinary finite integral if =50
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Also lim «n (illnj) =1.
0
Therefare the integral converges when 0 <n <} It diverges when n==1.
dw
Ex. 3. Prove that K V(I Say CORverges.

The integrand has infinities at ¥ =0 and z=1.
We have thus to examine the convergence of the two infinite integrals

ey [ O
R R R

whers « i3 some number between 0 and 1.
The p-test is safficient in cach casze.

? o
¢\
3.\ 2

4

£ 4
N

\j »\/{:c‘(:zl —j; converges, since hm {:-:zf(x)} f ‘

\"1 di
a Vix(t -z

l\'

- gonverges, smca hm {(i —a’} flz)) =1,
l . 1 . t ‘ :'3\\‘;
where we have written f{x}—-\?—{x—a—:;ﬁ '\s.

«‘ ”

Ex. 4, Show that [ log sin v d%%vggg_ aal to —~ 4 log 2.

‘ar org
Tho only infinity is at z=0, ;.md ‘the convergence of the integral follows
from the u-test.

>
“,“
$

Further,

=T ,“\ P
\ log sin z,de{=2 [ log sin 2z da
In \\ I

y [$3:4 edar
N> =wiog 2+21 logsinzdz+2| log eos & d
to

N/ .
"\*:\"' —T10g2+4{ Tog sin = de.
A _ e
Bug i log sin « dv =2 ) log sin x dz.
N\ Yo Jo
. O ke
\'\3 » Therefore \ log sin @ de= — {7 log 2.
il

From this regult it is cagy to show that the convergent integrals

\"rlog(l—caax)dx and ~ Tog {1+ cos x)dx
- S

are cqual to — 7 iog 2.

| t . T
Ex. 5. Show tha,t[ wcos 2y log sin zdx converges and is equal to - Yo when

7 is 4 positive mtcger
The only infinity is at =0 and the convergence of the integral follows from

the 4 test (or from the last example).
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Further, on integrating by parts, we see that

" i o
cos Zuz log sin v dz = - 1 ain 2nrx cos x

I 2n | Bin &
1 r"’ gin (2n + P} rsin (2n — 1)z
= el kL dx
T dn sin «
But wzi +2 Z cos 2rx.
sin _ 1
It follows that
br - A ¢
H . 2\
4 cos 2nz log gjn x de = i .\’\'
From this we obtain at once W
i N
5 cos Znxlog cog wdr = — T cos n. "\
0 4n m’\i.
i cos nx log 2(1 — cos x)dz = _ﬁ’ N4
S \}w
and ! cos v log 2(1 +cos z)dr = \—c cos n,
o

¢’ "

Ex. 6. Discuzs the convergence or dxvergence of the Gamma Function
integral ‘ e T lde, e, dbrauhbra'ry org.in
(i) Let nZ1.
Then the integrand is bounded !.n 0 < x=a, where & is arbitrary, and we
need only consider the convegg?noe OfS e—Zxn—1 iy,

The p-test of § 55 est.ablzéhes that this integra} converges, since the order of
€% is greater than any(given power of .
Or we might proe;ébd' ‘aa Tollows:

Since e¥=1 ,—T—\l; 4_._,9:
N .
when x 20 " s 5- (r =any positive integer),

a.nd'\” > g=ipn—1 -

\ \But whatever # may be, we can choose v 80 that r —n-+1 = 1.

It follows that, whatever 2 may be,

o
L e %2 " dy converges.
(i) Let 0<m < 1.

In thia case e~%2"1 has an infinity at x=1.

ri
The y-test shows that \0 €% dx converges, and wo have just shown that

ol
E e~ Tyl dr convoerges.
T

[+ 4]
Therefore ‘ e~¥x%1 dx converges,
lo
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tiii} Let »=0.
In this cagze e#x"~1 has an infinity at #=0, and the u-test shows that

1
e=zx—! die diverges to + 0.
o

1
Ez. 7. Discuss the integral S g7t log x do.*
L]

Since Hm (7 log #}=0, when r>0, the integrat is an ordinary integral,

a—rl}
when 7> 1. ‘
Also we know that N\
1 1 A

g logxdx:[x(log :\:—l)] =z{l —log =)~ 1. 2
L * \

Tt follows that | logwdo=limz{(1-tog&)-1}=—1. >

-0 T—{} ol

S
Again, lin (#* x 2" log @) =lim (=* t?1 log x) =0, if pZ™-7.
Faaall =0 L

And when 9 < & < 1, we can choose a positive numbe?g}less than 1 which
satisfles this condition.

(L 3\}_:
Thereforce \ zn~t lag x dx eonverges, when 0 < =1,
1 ~
Finally, we have A\
len (zx =) |log 2 | ) =lim w1 | dog 2| =, when nZ0.
) zwfwidbraulibrary .org.in

o KN
Therefors \ a1 log x dr diverges, When = =0,
‘a ™

~ 3
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EXAMPLES ON CHAPTER IV.
1. Show that the following integrals converge:

[*_sine iw (z-1)yz |7 e

- - -, il
p ltcoszte® 1+:.:+»o:3 ER = i !
» i log 2 it log e
gt 5 e,
L e-of2® cosh b da, \, 1+xdx, _\U p .ot
9. Discuss the convergence or divergence of the following integrals:
b dx [c o1 (C a1 d . A
e = dx, ) - x, where 0 a2c-0 1, LN
L(m—a,)\/(b—x)’ o«":+1dx’ 0T~ PR N
w L 1 % « N
5 G \ = dx, \ Bin™O eoanl . NG
o T+l lg -1 Y S
3. Show that the following integrals are ahsolutely cony ;‘t\mt
ran @
Eb sin 1 ﬁ, \ ¢—w*e® pog b dx, ‘ g~ it EMgin u.’,r o )y
o TEAMT g 1 Y,
Plz) ny
and dx, LV
) Q) )

where P(x) is a polynomjal of the mth derrrec, jand Q) a polynornial of the
nth degree, nZ=m+2, and @ is a

reater than the largest root of
Q) =0, W W dbrat?lug] At ygo
4. Let f{x) be defined in the mter\?al 0 < 2= 1 as follows:

f@y=2, <@, flo=-3, 1}<x=-%,
fRy=4, FOc=L, flay=-5

-y 1 <X T 4 '
and s0 on, the values beeg albe.rnately positive and nega.twc

Bhow that the mhm“te integral g Jlz)dx converges, but not absolutely.
5. Using t.he\ubstltutlon 2=e"", ghow that

O~ N " log xydz
converg;e} prowded that m > 0 and n>» —1,
.'éi.}lt.i'by neans of a similar 5gbst1tubmn, show that
s 2 Ylog yndr
eonverges, provided thai m <.{1) and n> — 1.

dx .
8, Show that \ (log @)t tn CONTETEES when p>0 and that it diverges

when 1 = 0, the lower limit @ of the integral being some number greater than
unity.

Deduce that if there is & number p > 0, such that ]_un Jrx(log a1 +1 (%)} oxists,
then & Ffle)dz converges, and give a correspond_mg test for the divergence of

this integral, f{z) being bounded and integrable in any arbitrary interval
(@, B), where b a. & Y arbirary
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i

e eoazx )
Show thab \2 (2 + siz {log )t dr oonverges,
™ dx \
and .\z (o) log & SV OTEe

7, Oun inlegratiog \ cos & log & d by parts, we obtain

{ &
~ coe it log x de=sin z log  ~ Em_:c di.
e N A
Deduce Lhat || cos & log & dx oscillates infinitely.
Y ) L ' si_n:i‘:"‘\.
Also show thab \ cos 2 log # dx converges, and is equal to — \n < el
L0 ! L/
. r” .\ . "4 N
8. On integrating \ cos x® o by parts, we obtain ) ."." ’
1. ¢
L . 1 P SAgin 2’
\ - cos xtly = E%;-,- sin &2 — 3 sinuw? 45 5 [ N dr,
where &" = @' 0. ~NY;

{2
o ¢*
Decluce the convergence of \ cos xidx. ’~~x\

9, Let /{w and gz} be bounded %\pd cF%‘ n a b), except at a cerfain

i
numher of poinis of infinite dlseontmm ese pom different for the
two functions.

/] N ."' [ & [B
Prove that Ef J{xdg{x)dz copyerges, if \ | flz) | dx and \ ) | g{x) | dx converge.
EX{s "\ JAE o b

10, Let f{x) be munob&ffj} when = =@, a.nd lim f{x)zﬂ-
Then the seriea D\ fla) +fla+ l)+f(“+2) +.

is convergent g d;ve;bcnt according as E flx)da converges or diverges.
Prove thy ;\fc»r all values of the posﬁ:we mtegel' iy

). 1
\“ 24/ (n+1)~ 2< w/z v,%<2\/n 1.
1 1 1
91 3y2 T4y

\\;Gonverge:. to a value between 3(=+1) and .

‘Albo show that

ki
11. {i) From the relation SEn—x -9 ¥ cos (2r - 1}&,
sin = 1
i w{ —1y1
show that \ sm Dnae L 2 {- 1) r-
4 sinE 1
T ’
Deduce that  Lim | 902 g =7,
A—sm Jp  SINE 2
{ii} By integration by parts, show that
‘kﬂ' 1 1
: ; el o= " Yde=0.
lim \ sin 2ni (sin p x)

2.l
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~ 00 N .
{iii) From the above, prove that \ i”::—r—-r

.0 2 ’
12 (i) Prove thutif u, = sin 20z cot & de
-0
g
and va=| R HT g,
la g
v
th = =l I o\
€1 w,=3m, and v ﬂh_?:n v Eu - dr. *\
(ii} By integration by parts, show that lim (v, —u,)) =0. ¢\Q)
A—roy
(iif} From the above, prove that VD sin @ dr=" \*
L o= 2 (\Q\"}

"4

: QS
www.dbraul%\b\g&‘}.orgin

R ¥
Y



CHAPTER V O\

THE THEORY OF INFINITE SERIES, WHOSE TERM\S‘ARE
FUNCTIONS OF A SINGLE VARIABLE, ™/

62. We shall now consider some of the progé@iesz of series
whose terms are functions of .
We denote such a series by

() +usl) +ugl@) FOFS
and the terms of the series are suppn'é;l to be given for values
of  in some interval, e.g. (a, &}-\f!\;{;db‘t‘éulibral'y_org_in
When we speak of the sum ofithé infinite series
wy(#) +dlglle) +2ug(@) +---
it is to be understood:t £ h
(1) that we settlgjb}what value of z we wish the sum of the
series;
(ii) that we..ﬂisn insert this value of z in the different terms
of Phéeries;
(ii1) thz{t:\{?é then find the sum—s,(z)}—of the first n terms;
.§~rind
(i?) that we then find the limit of this sum as #—%, keeping
. "\ ' z all the time at the value settled upon.
< On this understanding, the series
() +ea(X) +g{) +-
is said to be convergent for the value T, and to have f(x} for its sum,

*As mentioned in § 24, when we say that x Jies in the intervad (a, 8) w,e nean
that =z =", In some of the results of this chapter the ends of the 1ntcr}ra,1
are excluded from the range of x. When this is 50, the fact that we are dealing
with the open lnterval (¢ < < b) will be stated.

tOf. Baker, Natare, 59 (1800}, 319.

137
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if, this value of @ having been first tnserfed Ui the eff;{'}}_-rcnz terms of
the series, and any positive number ¢ haring beey chosen, as small
as we please, there {8 a posilive tnteger v such that

| fle) — sulx)] <e, when n v

Further, _

A necessary and sufficient condition for concerqenee (s thut, of any
positive number e has been chosen, as small as we plecse, there shaths
be o positive integer v such that A

|8 pep(®) — 8@} <6, when w2, %
Jor every positive integer p. ~\ hy

A similar convention exists when we axe dealing with other) 'aifn}t e |ITOUCESES.
Iz the definition of the differential cocllicient of ({ur) it i\f"lmd’vr.\at.fmri that we
first agrec for what value of  we wish Lo know /7(4); t}ml”“\.\'c 1hen c{a?cula-te
Ftx) and f{z + ) for this value of 2; then obtain thy }Q}n}; of fir By i)

; ; and
&
finally take the limit of this fraction as A0 W\

X

N\ .\ p .
Again, in the case of the definite inlegral 1“ W{, @) dor, v is understood that
i

we insert in fl, o) thwpuxttbhnﬁulihﬁﬁfm-%'w“hich we wish the in‘tegrfﬁ
before we proceed to the summation-afid limit involved in the integration.

We shall write, as befoze (§ "1'9),
g ."“jx\-r} - 3,,(03} = R'n(m]!

where f(x) is the s of the series, and we shall call R.(@) the
rematnder after 16 farms.

As we havegetn in § 19, R,(z) is the sum of the serics

\.\“ U3 1(%) + g ol @) 5] + oo
Alsct{ve’sha]l write

2

pRﬂ(m) ——‘S,H,?{ﬂ?) - S“(&’F),
remainder.
With this notation, the two conditions for convergence are
(i) [Ra(z)|<Ce, when nizy;
(i) | pBrnf®)| <€, When nzy,
for every positive integer p.*

5 \aﬁd call this a pariial

) 2

A series may converge for every value of x in the open interval ¢ <%= b
and. not for the end-points « or b.

* When there is no ambiguity it will someiimes bo convemient to orait the it
(), RByle), pRy(x) and write 5., R,, and olae
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Eyg. the sctics I+x+ait ...

| B
converges and has [ for its sum, when — 1<z < 1.

When x—=1, it diverges to +»; when x= —1, it oscillates finitely.

63, The Sum of a Series whose Terms are Continuous Functions
of x may be disconfinuous, Until Abel* pointed out that the
periodic Tutction of z given by the series

Z{sin w3 sin 2z +% 8in 32— ...}, O
which represents @ in the interval - s <o<r, is discontifiigus
at the points ¢:—(27 4 1), r being any integer, it was suppgsed that
a funetion tlpfined by a convergent series of functions,gonfinuous
in a given iulerval, must itself be continnous in ‘b}uat interval.
Indeed Canetyt dlr:.tmct]} stated that this was thq\uase, and later
writers on Mouvier's Series have sometimes ¥Déd to escape the
difliculty by asserting that the sums of ’rh(,se\hwonometncal series,
at the critical values of x, passed contmuuusly from the values
just before those at the points of dlsctmtmulty to those just
after.d W dbraulibrar y-org.in

This mistaken view of the su_m ‘of such series waa due to two
diflerent crrors, The first Q()nsmted in the assumption that, as n
increases, the curves y=%,(x) must approach more and more
nearly to the curve Efit}(x) when the sum of the series is f(x)
an ordinary § Lm(,mo\\mpable of graphical representation. These
curves y=s,{«} wo shall call the apprommatwn curves for the
series, hut wa, shaH see thab cases may arise where the approxi-
mation curypdyeven for large values of %, differ very considerably
from the\c&rve y=f ().

It}sst}ue that, in a certain sense, the curves

() y=su@) and (i) 9=/ @)

_apfroach towards coincidence; but the sense is that, if we choose
&ny particular value of z in the interval, and the arbitrary small
positive number ¢, there will be a positive integer » such that, for
this value of z, the absolute value of the difference of the ordinates
of the curves (i) and (ii) will be less than ¢ when » = ».

*Ahal, Journ.alﬂir Math,, 1 {1826), 316.

tCauchy, Cours d Analyse (1821), 1= Partie, p. 131. Also (Fuwres de Cauchy,
(Bér. 2y, T. I1I, . 120,

1CE. Sachse, foc, cit.; Donkin, deoustics {1870}, 53.
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Still this is not the same thing as saying that the curves comcide
geometrically. They do not, in fact, lic near to each other in the
neighbourhood of a point of discontinuity of /() and they may
not do so, even where f{x) is continuous.

‘The following examples and diagrams illustrate thesc poinfs
Ex. 1. Consider the serics
X

x ~
L, rab $
:\:+1+(x+1)(2x+1)+ r e .
1 1 Y
Here u"(x)P(ﬁa— e+l neq L .\} N
t
=t —-: < X
and sn{‘r} t na+ 1 :‘," ¢
Thus, when => 0, lim sp{z)=1; ."\\\’
v

when z=0, lim &, (x} =10, since s, (NS0
n—w INY N
The curve y=F{r), when 2 =0, consists of the pqrt‘ of theline 4 - 1 for which
x>0, and the origin. The sum of the seriey)id\discontinuous at r=0.
Now examine the approximation curves,

www,dbraulib a’tjx_qrg,jn
y—sna[%]';:i ar+1
This equation may be written %%

ad
SN g

({% 1) (x_,_l) =1
. n n
aghlar hyperbola {¢f. Fig. 10) approaches more and

As 7 increases, this rec\a
edg=1, ¢=0. Tf we reasoned from the shape of the

moro closety to the lin

L >
N\

;i g
AW
. ::\..'
"\Q
N
A
R\
..\\:
N\
Il ] i -t
-2 =1 0 1 2
:
Fia. 10,

approximate curves, wo should expect to find that part of tho axis of y for
which 0 <y < 1 appearivg as a portion of the curve y=f{z} when = = 0.
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As &, () i3 certainly continuous, when the terma of the seriey are continnous,
the approximation curves will always differ very materially from the curve
y=f{x}, when the sum of the series iz discontinucus.

Ex, 2. Constder the series

uy() + o) + gl + oo, 20,
SR il 3
where #f{x) = it T+ n- 1)
) nx
In this case 8(®) T &
and lim s,{z)=0 for all values of z. O\’
R—0D (M

Thus the sum of this series is continuous for all values of FA J’}?xt. v;!e shall
see that the approximation curves differ very matena]lg &om the curve
y=7f{x) ir the neighbourhood of the origin.

&.
¥ 3
.5 .
/ orgin
¢ ¢\ | !x
7] LS .5 1-0
A0 Fie. 11.
W,
O %
The cu.‘rye\ y=8,{}= g

hgs & ﬁs@mmum at {1/n, }) and & minimum at (- /s, ~§) (cf. Fig. 11). The

PDlnbs'}n the axis of z just below the maximum and minimum move in towards

13}19 \Origin as n increases. And if we reasoned from the shape of the curves

o~ ‘"%(3), we should expect to find the part of the axis of y from ~4 to §
/ appearing as & portion of the curve y=7(x}.

Bx. 3. Consider the series

y{) + %g(#) + ua®) + - xé 0,
nex i 1)33
where UplE) = Timet  T+{n- Dzt
3,
Here ()=

and km s,{z}=0 for all values of 2.
n—vaz
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The sum of the series is agsin centinuous, but the approxination curves
{cf. Fig. 12), which have a maximum uf (1fy/ 1 Ly nd b o niinimum at
{ ~ 1w, —§+/n), diffcr very greatly from the curve o Fia7 in the neigh.
bourhood of the origin. Indeed they would sumuest that the whole of the
axis of y should appear ag part of ¥ =/ (=},

¥
1B

a ~ -5
& Fra, 12,
64, Repeated Ld 't{f..’These remarks dispose of the assump-
tion referred to afthe beginning of the previous section that the
approximation girves y=s,(z), when » is large, must approach

closely 1o the i:ﬁrve y=f(a), where f(z) is the sum of the svries.
The seeQud error alluded to above arose irom neglect of the
conventio implied in the definition of the sum of an (finite
series, whose terros are functions of 2. The proper method of
mﬁ!}‘dmg the sum has been set out in § 62, but the mathematicians
\_to whom reference is now made proceeded in guite a " different
manner. In finding the sum for a value of ©, say @, at which
a discontinuity oceurs, they replaced z by 2 function of #, which
converges to r, as # inereases. Then t};cy ook the limit when
#—>w _Of _Sn(w) in its new form., In this method x and » appro&ch
their l'u;mts concurrentty, and the value of this limit ma}lf quite
well dlﬁe.r from the actual sum for #=u, Indeed, by choosing
: the fanction of » suitably, it can be made to take any val;le betweell

_}t'(x‘, +0) and f(z,-0), while in some cases it goes outside this
intervel (cf. Ch. IX, p. 293).

-
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For instance, in the series of § 63, Hx. I,
T % i}
241 g mEe i T T
we have seen that 2=0 is a point of discontinuity.
If we pat = pfn where p is positive, in the expression for s,(z),
and then let #->e0 , p remaining fixed, we can make lim s, (pfn) take
H—a0

any valte between 0 and I, according to our choice of p.  Forawe

P

Pt which is.independent of n, and

have s, (p/n)= O\

NS ¢
i =P O\

73_1332 Sﬂ(‘p/n)*}?—}-ls :“}"

which passes from 0 to 1 as p increases from 0 Eckao

It will be seen that the matter at issue was partly a question
of words and the misunderstanding of & defidtbion. The confusion
can also be traced, in some cases, to ighepance of the care which
must be exercised in any operatiomuvolving repeated limits, for
we are reaﬂ;; dfsaling here Wlth\@?‘?:l}htﬁ‘bﬁ‘[%% JEOgosS0s.

I the series is convergent andats sum is f (%), then

f@=)im s,(2),

and the limit of f(x).a-s:x tends to =z, aasuming_\that there is such
a limit, is given bgk\ . :
N\l fz)=lim  {Hm s, {@)] oo (1)

o O Ty R—R
I we 151‘}‘\ use the curve as an illustration, this is the or-
dinate :eil.the point towards which we move as we proceed
&Iﬂng%h“e curve y=f(z), the abscissa getting nearer and nearer
to wy, but not quite reaching z,. According as @ approaches «q
mﬁfsﬁ}h the right or left, the linit given in (1) will be f{z,+0) or
\ t'f(a:o — .
Now £ (z,), the sum of the series for 2=y, is, by definition,
tim 5, (%)),

B30

" and since we are now dealing with a definite number of con-
tinuous functions, s, (%) is'a continuous function of « in the interval
with which we are concerned.

Thus 8, ()= lim 5, (®).
F—=Fy
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Therefore the sum of the series for =1, may he written

Hm [lim s,(x)].

The two'expressions in {1} and (2) need not be the same. They
are 8o only when f (2) is continuous at z,.

65, Uniform Convergence.* When the question of changing the
order of two limiting processes arises, the principle of umform cono
vergence, which we shall now explam for the case of infinite series
whose terms are funetions of z, is fundamental. What is mvoly'ed
in this principle will be seen most clearly by returning to'th'e Series

I B 0. A
sl teeery Tt =Y X
In this series s (xy=1- #l_,, \%
nr +1 \
- N
and fim s,(z)=1 when x%@
Also R“{x)__—-l-—l—, z>0 an,d R 2(0)=0.

i
If the arbitrary p‘fﬁmﬁ'{vdebﬁam (I!ra e‘ylsot'%osen less than unity, and
some positive z is taken, 1t is c‘lear that 1/{ne +1)<e for a positive
n, only if

imx\ l—l
B\ P —
I

N\

1 e Ny
By, let =a Ll
g. let ¢ Pyt
o z=01, 01)1 0-001, ... , 10~P, respectively, 1/(nz + 1) < ¢ only when

n:>104 10%, 10, ... 10943,

Nl
Andy i\\n =fger1 j a0d =10"2, n must be greater than 10+ +v if

’\" a4+ 1) <.
\ sAs we approach the origin we have to take more and more terms of the
geries to make the sum of # terms differ from the sum of the series by less than

a given number, When x=10-%, the first million terms do not contribute
1 per eent, of the sum.
1

=-1
The inequality e
x

shows that when » is any given positive number less than unity,

*4A simple treatment of uniform convergenco will . by Ostond,
Bull. Awmer. Math. Soc., 3 (1896), will be found in a papor by Osg
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and « approaches neater and nearer o zero, the smallest positive
integer which will make R, (), K, (2), ... all less than ¢ increases
without lmit. _

There is no positive integer » which will make R.(z), R 4(x), ...
all less than this ¢ ju 2= 0, the same v serving for all values of z
i this range,

On the other hand there is a positive integer » which will satisfy
this condition, if the range of = is given by z = a, where « is sofie
definite positive number. N

Such a value of » would be the integer next above (%'4\1>“;a.

Our scries is said to converge uniformly in x = a, but‘;’a does not
eonverge uniformly in 2= 0. ‘\'\
We turn now to the series W

() +eeg() +ug(x) + 2000
and define uniform convergence® in an ii{%érval as follows:
Let the serres 2y (z) +aty() iy} +.
converge for all values of » ¥ ¥R ‘ihfmbblzﬁw;p_gbmml its sum be
flx). It is said to converge, um.formly in that interval, if, any
posttive wumber ¢ having been chosen, as small as we please, there
18 @ positive inleger v sucEZ that, for all values of x in the interval,

ff(i’") sp(@)<<e, when nizuf

It 18 tvue thab, }the series converges, | R, {z)| <e for"each # in
{a. b) when o L 2y

The additignal point in the definition of uniform convergence
18 that, mdy positive number ¢ having been choser, as small as
we pl &, the same value of v 18 to serve for all the values of x in the

’mteﬂ,'a,l
2N (For this integer » we must have
N Bl 1By

all less than ¢, no matter where @ lies in (&, b).

*The property of uniform convergence was discovered mdcpendently by Stokes
(ef. Truns, Phil. Soc, Camb., 8 (1847}, 533) and Seidel (cf. A6k, Ak, Wiss. Mitnchen,
5 (1848), 381). Sce also Hardy, Proc. Phil. Soc. Camb., 19 (1920), 148,

1We can also have nniform convergence in the apen interval @ < 2 <2 b, or the
half-open intervals o« x 7= 6, @ == < &; but, whon the terms arc continuous
in the closed interval, uniform convergence in the open interval earries with it
uniform convergence in the closed interval (cf. § 68).
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The series does not converge uniformly tn {«, 6} if we know that
for some positive number {say ¢g) there 1s no positive nteger »

which will make |R2), Ry oifr)

all less than ¢, for every @ in (e, b).
Tt will be seen that the series

® c
z+l T Mﬁ‘x‘n e
converges uniformly in any interval -2z -7 b, where ¢, & apg amy
given positive numbers. O

It may be said to converge infinitely slowly as « tem{q to zero,
in the sense that, as we get nearer and still nmror T*r,) tHle origin,
we cannot fix a limit to the number of terms w }uch we must take
to make |R (x)|<e. It iz this property of Enﬁmieig; slow con-
vergence at a point (e.g. z;) which prevents a series converging
uniformly in an interval (z,— 4, %, +é)\inghuding that point.

Further, the above series converges wniformly in the tnfindte
snterval = o, where g.Js, 205 @iﬁmq‘p@aéﬁgmnumber

It 13 sometimes necessary to, dmtmgmcsh between umforin con-
vergence in an infinite intervall@nd uniform convergence in a fized
interval, which may be as lafge as we pleuse.

The exponential serle?s}s couvergent for all values of z, but it
does not converge aviformly in the infinite interval « = 0.

For in this séries R,(z) is greater than w*/n!, when z 18
posifive, PN

Thus, if £he“series were uniformly convergent in 20, «°/n!
would neéd) fo be less than ¢ when nz=y, the same » serving fOr
all valies of 2 in the inferval. 1

But' 1t is clear that we need only take @ greater than (e)' t@
'make R,(x) greater than ¢ for n equal to ».

" However, the exponential series is uniformly convergent in the

interval (0, b), where b is fixed, but may be fixed as large as we
please,

For take ¢ greater than b. We know that the series converges

for x=q.
Therefore R {c}<¢, when »= b
Bui R (#)< R.{e), when 0=z = b<e,

Therefore R, (x)<e, when n= 4, the same » serving for all values
of % in (0, b).
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From the uniform convergence of the exponential series in the
interval {0, &), 1t follows that the series also converges uniformly
in the interval (~8, ), where in both cases & is fixed, but may
be fixed aa large as we please. '

Ex. 1, Prove that the series

l+x+2i+...
converges uniformly to 1{1 -2) in 0 = v Fa,< 1.

Ex, 2, T'rove thai the series N
(1-2)+=(l -2} + 221 -2} + ... ,.\:\
converges uniformly to 1 in 0 =Zx = w, <k, 7\
Bz, 3. Prove that the series 4 n'.'; '
(12l +o(l 2P+ 2 -xp+... N\
converges uniformly to (1-x)in 0 =Zw= 1. ..,\\

Ex 4, Prove that the series
1 1 1 w\/

15287252273 ?z—“_\ ¥

converges uniformly in the infinite interval 130

Ex, 5. Trove that the series wrvg | t;ltaulibral'y, org.in

LN
Cytagrrat

converges uniformly in the intersal (4, b), where b is fized, but may be fixed
as large ns we pleage, and thaf’it docs not converge uniformly in the infinite
interval x =0, ) imt\ \

66. A necessary “and sufficient condition for Uniform Con-
vergence. When'the sum f(x) is known, the above definition often
gives z con.vanibr{t means of deciding whether the convergence 18
uniform or Iibﬁ

Whe’\ﬁhé sum is not known, the following test, corresponding
to the\general principle of convergence (§ 15), is more snitable.
N () +15(2) +uuglz) + e

\58‘: an infinite series, whose terms are given n the interval (a, b).

A necessary and oufficient condition for the uniform convergence of
the series in this interval is that, if any positive number ¢ has been
chosen, as small as we please, there shall be a positive wnleger v such
that, for all values of % in the interval, |,B.(z)|<e, when nZv, for
every positive infeger p.

() The condition 1s necessary.

Let the positive number ¢ be chosen, as small as we please.
Then take Le.
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Since the series is uniformly convergent, there s a positive
integer v, such that

| flz) — s(@)| <}e, when iy,

the same v serving for all values of x in (o, b), f{x) heing the sum
of the series.

L . AR T SN
Let ", o be any two positive integers such that n"=n =v.

Then  [s,r(z} - sp(@)|=]sai@) ~ fl})] +| f(@} - s}

< e +3¢ N
<& \)
VT 7 L
Thus [5,,,,{%) — s,(x)| <e, when n= v, for every pomtwcaz@eger P
the same v serving for all values of z in (a, b). N

(i) The condition is sufficient. (¥

N\
We know that the series converges, when Jbhis condition is
satisfied, A

Let its sum be f(z).

Again let the arbitrary positive nu.mb%r ¢ be chosen. Then
there 18 a positive integer vy such that N

(0902} — 5(2) | << Sy oYL 2R NS BNery positive integer P,
the same » serving for all valugg of % in {a, b).

Thus s, (%) — %e< s,,+p(:c}< 3, (%) +3e
Also 1'Im 8,452} =f ().
Therefore s\g}) Le=f(x) = 5, (%) + e
Bu

1Su(w)"f($){"lsﬂ($} sy (@)] + s, (@} —f(z}]-

It follows, that. when n is greater than or equal to the value v
specified abéve,

.,\\ : Isale) (o) <he +ie

<€,
anti th,ls holds for all values of @ in (g, b}.

\ "Thus the series converges uniformly in this interval.

87. 1. Weierstrass’s M-Test for Uniform Convergence. The
following simple test for uniform convergence is due to Weierstrass:
The series 1(;c) + U} +uglz) +..

will converge uniformly in (a, b), if there is a convergent series of
positive constanis

M+ M+ M, +..
such that, no matter what value v may ktwe in {a, b),

(i) = M, for every positive integer n.
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Since the series M+ My +M,+...
is convergent, with the usual notation,
Moy + Mg+ + M, <6,
when n =y, for every positive integer p.
But A Rale)|= (e a(@)] + [tn @)l o+ [tngg(@)].
Thus {pBnleE My + Mg+ + M,
<Ze, when »n = v, for every positive integer p, | \
the inequality holding for all values of @ in (g, b).
Thus the given series is uniformly convergent in {g, 5). )\
For example, we know that the series O
1+2a +3e?+... <~f.’~" ’
is convergent, when « is any given positive nuffiber less than
unity, o)
It foliows that the series
1422 +322 +.., ¢
is uniformly convergent in the intervgl’j,\— a, a).

.\\, -

W

Ex, 1. Bhow that the series \\’w\v.fll:;ra;ul ibrary.org.in
x cos B +2% cos 3[5;}-":::3 cos 36+ ...
is uniformly convergent for any ir}t'ej:'i'a.l (g @,), where — L <@y <<, < I and
# is any given number. R\
Ex. 2. Show that the seriés
x'gﬁ's,\ﬂ+a:3 cos 20 +a° cos 30+ ...
and \.&\Lzusﬁ+%xcas20+:§cos 3+ ...
are uniformly cqm{ergcqt for all values of 6, when |z} is any given positive
number Jess tha’.n\un_ity.
"\n .

67. 2. /Firther Tests for Uniform Convergence. In the M-Test
the geties converges absolutely and uniformly. But absolute
conyergence is not reguired in the following tests, ustially called

mé.b\el’s Test and Dirichlet’s Test,
N/ L Abel’s Test. Let the series

(@) F2g(x) FUs(®) eerenenenns SO € § |
tonverge wniformly in (@, b) and the sequence
(@), Vo), V(L) ceerrreenin venn{2)

be monotonic for every { fized) @ n (e, b) and uniformly bounded.*

*A funetion f, (2} is said to bo uniformly tounded in an interval, when there is a
Positive number K, independent of  and =, such that | fy(2)| < K, for every value of
% in the interval, and every positive integer 2.
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Then the series
wg(@)v,(2) +ualedvglin) +ugledeglet -~ {3)
is uniformly convergent in {a, b).
Let ,R.(z) be the partial remainder for the series (3) and 8,(s),
o7s(2) the sum of » terms and the partial remuinder for the series (1)
Then R, () =py1{2)0n (@) T otusp{o)tngla) 400
+un+y($}vn+p(x)

= lT,L($)$ﬂ+1($) + ':an(x) - 1?‘"(;}}) S ] e

N

+ [p?n(x) - rl?'n{x):l’vn-i-p(x) , < \“,\
= 1) [0 {2} - Uﬂ+2{$)] + ... R \
+D‘1Tﬂ($) [1‘}1’!4—9—'1(1:} - i"ﬂ-i—_‘v(x}.g - 'I’rrﬂ(‘j';¥u!i.'l‘.ﬂ(1:)-"(4)
Now it i3 known that RS

[0541(2) = nial@))y  [¥n10(@) ~ 9,5(2) ), ['*"1i+ﬁ;1(%‘:} = ()]
all have the same sign, © being fixed; and thzbt there 1a a positive
number K such that |v,(a)|< K for all xdliés of x in (v, b), and
every positive integer =. AV

Algo, since the serigs \A(Hb(;%ym@n%qmly, when the arbitrary
positive number ¢ is chosen, there.is & positive integer », stch that
Il"‘ﬂ(m)l) I‘Z?:;;(x)ls A Iﬂ?ﬂ(x]‘

are each less than ¢/3K sthen nZy, the same v serving for all
values of z in {(a, &) o

2%

Tt follows from (4)'%hat
| R | nle) a0 |+ [0l
SO <ot
s\ <le, When nz=y,

the game » serving for all values of z in (a, ).
o~ Thus the series (3) is uniformly convergent in (a, b).
NVEz. 1. Let y+ a5 +ds+ ... bea convergent series of constants and #,{x) ="

Then EU} Gatg(¥) converges uniformly in 0=y =1.

1
Ex. 2, Leba;+ag+... be a convergent series of constants and v,(x) = F

Then % @ptyl®) converges uniformly in x= 0,

Ex. 8. Let ay+a;,+as+... be & convergent series of constants and gy G1s
Gy, ... De a monotonic ascending sequence of positive numbers. Then the series
: Bg€ TR+ 1801 g e g
converges uniformly in z =

S
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11, Dicichlet’s Test. Let
8,0m) = () +a(x) oo Up(@)
Then the series
wy(@)3(7) +uy(®)0a(m) +rtg(@)ral) +.ov
converges wiiformly in (e, b) provided that
(i) s,(z) is uniformly bounded in {a, bY¥

and A
(i) #,(z), val®), Ba(), .0 19 @ monolonic sequence converging unt-
Jorily to zero wn (@, b). \ )
With the same notation as above, :‘:}‘-‘"'

P REES ”n+1(£) 4 (T) + o +u’ﬂ+p(x s p(‘E)
sy (E) — S(@)] Py (T} +[8a42(%) —'Sm-”(,})s'bﬂ pal®) + .-
+[Sﬂ|p(T) - 9n+p-—1($ |Un4 £)
e calcm i) — Pppal®)] +- g X 's.
tEn1p- &) [Erip- 1(‘5)"'1n+p(-}3)]
+8, +p(a")v,\mg‘) d—bs,;(x? R
b
Then we have ab once e raly orgin
| R}l < H{ |01 () %m(zv )+ [Basp@)] + 10naa@) -
But the sequence v4(2) vy (x), .. converges uniformly to zero.
Therelore we know{ that, however gmall the arbitrary positive

number ¢ may be, }b}ru is a positive infeger », such that

N \H; l .E}ﬂ(x) | < 3‘}{, When L=

L D

the “Jme“x;’\el wving for all mlueb of z in the interval.
And%(v: v,{x), etc., are all of the same sign.

‘th,r{,fore
o) | Bal)| ¢, when n=v,
S the same » serving for all values of @ in (@, b), and the series
Z 'L{-“(ﬂ’})'t"n(ll;)
T
converges uniformly in (e, b).
R U T
1. The scries {7a? 2+x2+3+x‘3

converges uniformly when « 2 0.

*Cf. footnote on p. 149,
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Ex, 2. The series gin x+4 sin 22+ § sin 3v+ ..
cosx+ycos Bz +leoset ...
converge uniformly in (¢, b), when 0 < @ < b <2,
Ex. 3, The scries- sin z—}sin 2x+} sin de ..
aos x—} cos 254§ cos Ju ...
eonverge uniformly in (- a, o), where 0 < e << 7.
Bx. 4. The series  sinx+3sin 3w 4-} sin 62 +...
}sin 2z +3 ein da+§ sin 6z + ...
cos x+4 cos Bx+ ) cos Sr g ...

1o 2zt onsde+}cos bz k..
converge uniformly in {(a, b), when 0 <a <L < .

o n
Ez, 5. Theseries ¥ a,cinnr and X, cos e
1 1

S

L B

lcH. ¥

converge uniformly in (%, ;) when (<, <2 <27y .pg\\\'idu{l that the

constants a,, fy, ... form a monotonic sequence and linNGR=E.

e B

RS,

68, Uniform Convergence of Series @@Ee Terms are Con-
tinuous Functions of x. In the previgus sections dealing with
uniform eonvergence the terms of thg'séri’es have not been assumed
coutinuous in the %ﬂbfﬁ%{‘l\’r‘éfy“ﬁmshall now Prove some

properties of these series when, tﬁis“condition 18 added.

1. Uniform convergence implies continuity in the su.

If the ferms of the series\

7 3

%(xj +ag{x} +ug{x) + ...

are continuous in {m, b), and the series converges umiformly to flz)
o this intervaly bhen f(x) is a continuous function of x in (@, b}
Since thessevies converges uniformly, we know that, however

srall

such phat

al
e

| f(2) = spi@}|{<<de, when nizv,

N\
\wﬂ:,e’same v serving for all values of & in {a, b).

3 -
/' Choosing such & value of n, we have

J@)=s.(m) + R (),
where [R,(2)] <%, for all values of 2 in (g, )

%ﬁl}ﬂs’lm’e number ¢ may be, there is a positive integer ¥

Since s,(z) i the sum of » continuous functions, it is also con-

tinuous in (e, b).

Thus we know from §31 that thereis a positive number 57 guch that

loule') ~ safa)} < Je,

when 3, «’ are any two values of » in the interval (a, b} for which

12 ~z{= .
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But £ =s,40') + Bofo),
where [ B2} <{e.
Also J@) o) =[s5,{x"} - s, (w}] + R (= R (z).
Thus [ f(#") —f(@)lz=]s.(2") - sa(@)] -HRn(J» | + By}
e +3e+3e
<Ze, when |#"—2|=x. )
Thercfore f{x) is eontinuous in {a, b). \
II. If « sertes, whose terms ore conbinuous functions, }ms 4 dts-
continuons sum, it connol be uniformly convergent m M& Jinterval
which conlains ¢ poimt of disconttnuity.
For if the series were umformly convergent, w have just seen
that its sum must be continuous in the intervil & uniform con-
vergence, N

[IL. Uniform convergence is thus a &i{ﬁ%mm condition for the
continuily of the suin of @ series of conbiwuous functions. It is nob
& necessury condition ; smce different mn—uwgfwmiy convergent
series are known, which represem con? P TURCAERS I the dnterval
of non-uniform convergence. j A

For example, the series diseussed in Ex. 2 and Ex. 3 of §63

are uniformly convergant in # = a> 0, for in both cases
JR\&:){ =L when zzax0

Thus [R,( .g)}&e, when n>-1/ue, which is independent of =.

But the intyerval of uniform convergence does not extend up to
and inelfde” £==0, even though the sum is continuous for all
valuea&

Thls I3 clear in Ex. 2, where B, (%)= %2, for if it is asserted

\th“t [R,(z}| <&, when n =y, the same » servmg for all values of «
in % = 0, the statement is shown to be untrue by pointing out that
lora=1fy, R, (z)= 1 and thus | B, (@)| 4 ¢, when n = », right through
the interval, if e< 4.

2 . -
Similarly in Ex. 3, where Rﬂ(m):f%}%, if it is asserted that

|R.(2)|<e, when nz y, the same v serving for all values of z in
220, we need only point out that for z=14/% R, (z)=3,"
Thus | R, ()| <, when #= 1, right through the interval, if e<}.
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There is, in both cases, a positive integer o for which
R,(1jm)<e<}, when # =y, bub this integer 13 yreuter than 1fm.

Thus it is clear that the convergence beconwes infinitely slow
asg x>0,

IV. If the terms of the series are continaows in the closed wnterval
{a, b), and the series converges wniformly in w--u- b, then it must
converge for x=a and x=b, and the wniformdy of the convergenced,
will hold for the closed interval {a, b). O\

Since the series is uniformly convergeut in the open jnferval
a<<z<.h, we have, with the usual notation, \ N

|8(@) - sp(@)l<le, When s, AN T (1
the same v serving for every « in this open intervahs
Let m, n be any two positive integers satisiying this relation.
Since the terms of the series are continuo;tsg%:tho elosedd interval
{a, b), there are positive numbers 7, andgpyy 52y, such that

8.m{2) — 8, (@)| > e, when 0="x —a) 2,
and |s,,l(9.:) " %‘Phiég‘amﬁ%?ﬁ?l 0 gglg;c -} = Ny
Choose a positive number % netigreater than 7, or #,, and let
0=fa=~a) 5.

AN

Then RAGRC BN

1ol ~ s ) 5, -+ ) 0]

<le +3e e

<€, ‘&fhen L L I AALEETE {2)
A similar’a{'gument shows thut

'S Sl — s,(0) e, when m=n s e (3)
lerikﬂ and (3) we sce that the series converges for z=a and

o= Er; ;a'?,nd, combining (1}, (2) and (3), we see that the conditiod
~Agrbniform convergence in the closed interval (g, b) is satisfied.
I the terms of the series

Uy up{w) - ugla) + ...
are continuous in (a, b}, and the series converges uniformly in every interval
{a, f), where g << q < f < b, the series nesd not converge for 2=na or & =i
H.g. the series Y2 Bt L
converges uniformly in { - a, @), whero ¢ < 1, but it does not converge for
z=~1 ar x=1.
However we shall see that in the cuse of the Tower Series, if it converge$

for x=a or =, the uniform convergence in {«, ‘f;} extends up to o or & 38
the case may be. (CH. §72.

Butb this property is ot true in general.
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The geries of continuous funciicns
wy{2) + U]+ () + ..
may converge unifornly for every interval (a, f) within {g, b}, and converge
for v = or # =&, while the range of uniform convergence does not extend up
to and include the point ¢ or 6.

H.g, the seriea B R el L B c L P USSP (1
formed from the logarithmic series
a-let b — L {2
by taking two con:.ecutive positive terms and then one negative terim g
conversent w hen —1-2 3271, and its sum, when ©= 1,18 3 log 2.% A\

TFurther, the scries (d; is absolutely eonvergent when jx| <1, and @mr& ore
the sum is not altered by taking the terms in any other crder. (Cf> F22.)
Tt fo]lowe that when |2 <01 the sum of (1) is log (142}, a:nd(*.vhen r=1 its

gum IS ¢ 05,’ 2.
'd(,nr,e {1) iz discontinuous at =1 and therefore the: sh{erval of uniform

coltvergence does not extend up to and include that poiny”

89. TUniform Convergence and the Appruximatjmk\'c’urves. Let a series of
continuous fanations be uniformly convergent i@y b).

N

www dbrauli

¥rg. 18.
Then we have, as hefore,
| $pal) — 8, () [ <&, when m>nZ=v,

the same v serving for all values of z in the interval,

In particular, | 8 — s (x}] << ¢, when mi>w,
and we shall suppose v the smallest positive integer which will satisfy this
condition for the given ¢ and every = in the interval.

Plot the curve y=:s,{x) and the two parallel curves y =&, (%) ¢ forming
8irip o of breadth 2¢, whose central line is y=s(z). (Fig. 13}

*Cf. Hobson, Plane Trigonometry (Tth ed., 1928), 251,



156 INFINITE SERIES WHOSE TERMS [cr, v

All the approximation curves ¥ =s, (), m > 1, lie i this strip, and the curve
y=F (=}, whete {{x} is the sum of the series, also lies within the strip, or at most
reaches its bonndaries. (UL, § 66 (ii).)

Next choose ¢’ less than e, and let the corresponding smallest positive integer
satisfying the condition for uniform convergence be /. Then i is greater
than or equal to v. The new curve y=4,(2) thus lics in the first strip, and
the new strip o’ of breadth 2¢’, formed as before, if it gous outside the fisy
strip in any part, can have this portion blotted out, for we are concerned enly

with the region in which the approximation curves may lie ag ne ingroases fog
the value v.

28, N
In this way, if we take the set of positive numbers NS ¢
N
e =&, where lim ) =0, AN
K—k A 3
and the corresponding positive integers ¢
viulﬁ:vn"”, .s"

we obtain the set of strips T, 7, o,

%

\/
Any strip lies within, or ab most reaches, the ‘bbund(lrv of the preceding
one, and thejr breadth tends to zero as their th‘bur neroases.

Farther, the curve y=;(x) lies within, o af'ost reaches, the bonndary of
the strips.

This construction, thsmfwd,hlw@ﬂyaﬁﬁawﬁﬂ& the continuity of the sum

of the series of continnous functigng™¥n an interval of uniform convergenee,
but it shows that the approxiviatién curves, as the number of the terms

increase, may be used as a guide to the shape of the curve for the sum right
through the interval® S\

S

0.1, A Sufﬁclex}f}?ondmon for Term by Term Integration of &
Series whose Teyms are Continuous Functions of x  When the
series of coz;tiiﬁlous functions

O () + Uy () dug(e) + ...
is uniiﬁx\ﬁly cenvergent in the interval (e, b), we have seen thab

its gum, f(z), is continuons in (¢, ). It follows that f{z) 15
wni;egrable between 7, and z,, when ¢ = xy<<z, == b.

) But it does not follow, without further examination, that the
series of integrals

I.zel{;v)ria; —|—j g (w)da -{—jl 1-2,5'3(;5)(17.:2: + ...
is convergent, und, even if it be convergent, it does not follow,

withont proof, that its sum js J‘:lf(x} dz.
.J'n

*Of course the argument of this section appiies only tu such functions as can ke
graphically represented.
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The geometrical treatment of the approximation curves in § 69
suggests that this result will be true, when the given series is
uniformly convergent, arguing from the areas of the respective
eurves.

We shall now state the theorem meore precisely and give its
demonstration :

Let the functions ug{z), ty(x), wsz{x), ... be continuous in (a, b),
ond let the series

14 {T) + g () +uip(2) +.00 A
be uniformly convergent on (a, b) and have f() for its sump e

Then ~\
Jmf(;r,) dz :rul () dw +r’u2(¢) dx +r‘u3 @fdr ...
£ Ty 2] NN

where o =xg<z; =b.
Let the arbitrary positive number ¢ bg,grmmen.
Since the series is uniformly convergent, we may put
flwy=sa(z) RB:l2),

\a;\i{\wadbraulibrat'y,org.in
where | B (e} < Y when n=v,

the same » serving for all féﬁﬁes of % in (e, b).
Also f(z) and s,(z} are contintous in {(a b) and therefore

71

Integrable. ™
Thus we havex
O\ rlf(a:) da —_-r’sﬂ(:c) dx +J- ’ R (=) dz,
~'\ if Ep g oy
wherend =2 %, <2, = b.

N\ | [y T i X
Fhercfore ! [ flz) de —-I s.(2) dr i: I R (2)dx
NS P To iy i
) 2y~ %
N\ “¢%a
<, when_ "=y,
But rl 8, (z) do= ij.hﬂr(i”) da
o 1 o

ki3

Therefore iri f@)da— >, rl w,{x) dm!<e, when nz=u.

. %1 :
Thus the series of integrals is convergent and its sum 1 L flw) dx.
L]
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Comnrrary T. Lel 2 y(x), wo{®), valr),... b continnons in (a, b)
and the series (X} 4 ua{m) Frg{w) 4+
converge uniformly to f(x) wn (a, b).

Then the series of integrals

r tq{x) da + r 1 ofe) +r oy die 1L

converges unijormly to r Flydx in (a, b), when ¢ oy b

This follows at once from the argument ahove. O\

: Ny
CorotLary IL.  Let w,(%), ug(x), ua{2), ... be continvonsNit (a, b)
and the series

~

{2} +uofx) +uyfe) +- A N
converge wwiformly to f(x) in (a, b). \‘
Also let g(2) be bounded and integrable in (a, BINY
] = [ N
Then If(w)g{a:) dx:ﬁj. s ’@ dz,

a
where o= #y<x = b, and the convergendg’ of the series of integrols 18
uniform in {a, b). o w.dbr aulibra .0rg.in

Let the arbitrary positive num'ber ¢ be chosen, and let M be
the upper bound of ] g(@)] in (b,

Since the series L”a("@ ¢onverges uniformly to f{z) in (e, D),
we may pub \\)" {9;} sn {z) + R, (x),

where an{w)! <3 6 ay when » =y,

the same » %{vmg for all vaiues of in {a, b),

Ther f(ms'we have
| w feg@ do= smrgite +[" Boja) g(aras,

N
\”“Ehﬁre @ =g<z= b,

Thus | | f ()g(z)dz~ [ $ofa)g (@) do = ; j R, (x)g(r)dz .

|| gty de - z,j (@) s

W= Ml

<Ze, thn n
which proves our theorem,
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[t is clear that these integrations can be repeated as many
times as we wish.

Ez. 1. To prove that

! log{1—-2ycosx+y3de=0, when |y{<1*
’ =mlogy?, when {y{>1.
We know that
W —COR
1 3rcos e s = ~cosx-yeos Zr-yfeondzt.., e N,
when [u| =1L O\
Also the series (1) converges uniformly for ahy interval of ¥ Wlthm {1, 1}
(67,1

- __ HTCOSE g . -1 \ 1.
Thercfore _\D T2y cos iy dy ? cos nr L' ¥y dy, fs[l::gtn {9 <

o m\
Therefore §log(l-2ycosz-hylj=-2X # ¥ whew |y| < LY o)

Bnt the geries (2) converges uniformly for all yaﬁ}aé of &, when |y| is some
positive nnmber less than unity (§67. 1), L ¥

w \ ’1‘:

Thus 1;!| Tog (1 - 2y cos z + ¥ ) == —1{;% rr cos v dr, when |y| <1
i www ClbI'aUIJPJI ary.org.in

Therefore | tog (1~ 2JcosxTﬁ ﬁi;:: ~0, when ly] <1

i
-0

for \ 2 1

But | log ()~ 2y cosst+;r;3)c2x-:i [10gg/2+10g (1 —?}cosx+§2- )] dz.
km a o .
rir '

Therefore .1'0 log (1 —\%{eés r+ytidr=u log 3%, when [yi=1.

Ex. 2. Prove thaft Af m 19 & positive integer,
Y g™
L\m@mxlog (1 ~2ycosatytide=—7 s nE
according ‘ag’ |y1<1 or lyi=1.1
o li<
It f'c:]lo“;. from Ex. 4, p. 131, that we may replace the symbols <, >> by =
o ua'ﬂd = rospeciively.
/T & s not 7ero or an even multiple of , the scries on the right-hand of (2)
touverges when y=1.
1t follows from Abel's Thoorem on the Power Series (§ 72, VII) that

cos ne
- , when = £G or 2rm,
i

—

Llog 2(1 —cosx)= ~
Again, if x is not un odd maltiple of x, the series on the right-han d of (2) converges
wher y=- —|.
Then, as abave, we have
Flog2(1 -}-coax)_“'[ 1y —1 022 when w(2r + 1.

11 follows from Ex. 5, p. 131 that these rcsulta hold also for jy|=1.
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70.2. The following extension of the theorem in the precerding section is
sometimes useful.

Lot 1z}, uy{x) ... be functions iniegrable in (@, b} and lel s,(4] = )L‘ (%) and

fley=Eurz).

Thus if (i) f{x) 18 integrable in {a, b), and {ii} the series converges nwniformiy lo
flx) n (a, ¢), where ¢ is any number befween a and b, and (iii) =iz} is wniformly
Lounded in (a, b}, . - ~

‘ fleyde=X {“ ugfuide.
Jn [ K \.
Since the sum s,{x) is uniformly bounded in (@, b}, thereis a positiv? x{}u\ﬁher
K (independent of x and n), such that

N

. N

%
S,

lsn(x)i <K '.':.? :
for every x in (&, b) and every positive integer n. A\
Let the arbitrary positive nusmber ¢ be chosen, and 3¢k ¢’be alken so that
¢ ~NY;
b-c< I’K-’. ¢ \

Then | syt - suarde={ (@) - s, || f@)e - | syapdn )
@ a “ NS e le

ana |{ few)dx- ) suiemg2fred RERIEST Ve ot 2 @
But o2} | < K.
Therefore ) |im (@) | 5 K

/N =i
But the series convergg&ﬁnifomly in {a, ¢).
Thus there i3 a positive\integer », such that

p.\ \‘U‘(;:) ~8a() | <‘2T;——a}’ when nZy,

the same » gpr?l;ﬁg' for all values of % in (g, ).
1 1 tonowd flom (2), that
. O

A\ b nh .
) -3 5 _ -
N \Lffx)dm Z L u,(x}do:l: <575~ 3 {c—a)+2(b-0)K,
,‘.\: » < %e +§E,
when » =y, <&

Thus, under the conditions stated in the theorem,

] = ih
Y S(xydz=73, [ u(z)dx.
S 1 -
This may be extended as follows:

Let the integrable function f(x) be the sum of the series of integrable funciiond

\‘ ! ux(_:c), ufx), ... and leb ihis serics converge uniformly in o= x =b, except Jor &

1 Finite number of sub-intervals, the sum of whose lengths can be made less than any
- i

given number.  Also let 5,(x) = ; u{x) be uniformly bounded in {a, b).
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rh o {h
Then \ f(x)dm:}:{ wdx)de.*
) 1.8

71. A sufficient Condition for Term by Term Differentiation.

If the series 2y (%) + g (T) Fug () +...
converges tn (o, b) and each of its terms has o differential coefficient,
continious in {a, bY, and if the series of differential coeflicients

1" (&) + g’ (&) +ug” (7Y + ... N\
converges uniformly in (a, b), then f(x), the sum of the original semes,
has a differential coefficient at every point of {a, b), and \ D
Frz)=uy (@} +uy (@) +uy (@) +..0 PAY o~

Let ) =uy" (@) +uy’ () +u (2 )-1-,..’.?? ’

Since this series of continuous functions con?e\r'ges uniformly
in (@, b), we can integrate it term by term.

Thus we have ':’,\\“’

1 1 £1 “\ v x
j c,&(:v)d-:v:j -u-l’(:c)dx%-J. ug ) +J. uy (wyde + ...,

where == Tp<ly = b. W:h‘,':'v”:&braulibl'ary_opglin
Therefore rl (x) dﬂf:h?;é;ﬁ) — g {g)] Hlug(my) — ol )] +oo
But f(;gi{:ul(ml) () g () 4o

and \f(%) 1y (1) +2g{w} +eg (%) +
Therefore x > J p(xyde=[ () -flay).

\ /
Now pu‘i;\ ry=2 and ;=% + Aw.
Thf:T\\ by the First Theorem of Mean Value,
R (fi 5)—\3' —f {z+ Ax) f(:?"
.\Wherc r= E=a+ A,
3
\ Therclore p(&)= _fletln +44) f(.z:}

T Aw

*Cf. The Mathematical Guzette, 13 (1927), 438. In this paper by the ‘f“th“r, on
*Term by Term Intogration of Infinite St.rleq  fgrther information on this subject
Will be found ; and & proof is given of the thearent duc to Arzels {1883} that when
the serivs of integrable functions 1, {x), #5{x); ... CONVETLLS to the inteyrable function

f=), and the sum .%u,(x} is uniformly bounded in (s, b), then
1
. -
Yb flzg)dw =X ( a ()i
la I a

1.
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But Him ¢ { &) -~ eplr],

Al
since ¢ (%) is continuous in {«, b).

Therefore f(z) has a differential coeficient [*(«} o {, &),

and JE) =iz}
=y (@) +y {r) oy ()

Tt must be remembered that the couditions [or continuity, and\
for term by term differentiation and infegration, which we hav
obtained are only sufficient conditions. They are ot nmas?mrg
conditions. We have imposed more restrictions on fhe !mmtwns
than are required. But no other conditions of (‘Lll].cﬁ Shaplicity
have yet been found, and fer that reason thesg 1{mrnunu are of
Importance.

It should also be noted that in these seghigns we have again
been dealing with repeated limits {cf. §.§‘>{)~, and we have found
that in coertain cases the order in which, the limits are taken may
be reversed without altering the rcs,ult

In term by term lwﬁéwré%&‘l%aﬁ§ e8een led to the cquality,
in cerfain cases, of 9

Ny

[ ]imsﬂ(r{d.n and 11mj s, () dor.

g - ora a
Simitarly in t-erm\kisr term differentiation we have found that,
in certain cases, {

hm[hm(;’{(M__.-ﬂ_("’)ﬂ and tim | tim (® o b M Sy 9’))]

fald {_s—som n—e _h—l ™

are eq?@\. .

?\2: “The Power Series.

The properties of the Power Series
a\ 4 g+ a2t 4 L,
Nare 80 important, and it offers so simple an ﬂluguatlon of the results we have
just obtained, thab u separate discussion of this serics will now be given.

L. I the series B+ a8+ a4,

i8 convergent for x=ux,, it @5 absolutely convergent for every value of & auch that
|z <lay.

Since the series is convergent for =y, theve is a positive mumber M such
that {2,2%| < M, when % :z0.

in
Bug s =g x| =

E
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Therefore if | g ! =¢<1, the terms of the series
HE ]
[0 |+ | @y | + agz® {4 ...
are lesa than the corresponding terms of the convergent series

M{ltec+e?+...},
and our theorem follows.

II. If the serics does nof converge for w=1,, it does not converge for any valye
of @ such that |x| = | x|,
This follows from (I, since if the series converges for a value of «, such that

k| == | wp|, it must converge for x =,
¢ \
IT1. ¥t follows from (1) and (IT) that only the following three cases ca.Q r:ceur
{1} The seriey converges for x =0 and no other valoe of z.

~

Eg 1+Uz+212243128 ..., ™
1+a+2%2+ 33 4. D
{ii} The zeries convergea for all values of . ‘\
Eg. 1+a:+2,+ "\\;

(iii) There is some positive number p such that, “when {#|<p, the series
converges, and, when |z | p, the series’does not converge.

Eg. z- .

The interval -p<a<<p is called %ﬁgmf uli 5?{%%%&%&%& of the series,
Also it is eonvenient ta say that, in j:ﬁe first case, the interval is zero, and, in
the second, infinite. It will be s’e’en' that the interval of convergence of the
following three series is (- 1A%

; ii’l +T T+,
\\ x a2

A\ 1+1+§+-.-,

‘) x  xl
& 1"?-]‘2-!*2'.1*".”

But. it should\3é noticed that the first of these does not converge at the ends

of the interval; the second converges at one of the ends; and the third con-

verges, a.t both.

In\the Power Series there cannot be first an interval of convergence, then

an\mtmvfﬂ where the convergence fails, and then a return to eonvergence.
Y/ Also the interval of convergence is symmetrical twith regard to the origin.

We shall denote its ends by 1, L. The series need not converge at L' or L,

but it may do se; and it mus$ converge within 1L

IV, If the series converges for a value of 220, t?um the sequence

ni“

fay, J“z] |"5"a]_‘s T

is bounded above: and if Lim iaﬂi;&:!&bbo, the inlerval of convergence 8
n—aL

1 — 1
e L If Tim |a,, | =0, the series converges for all values of =
e i ]
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We are given that the series converges for some value of z 2= 0.
Then, a8 ir (1), there is a positive number M, which we may take greater than
unity, such that la,&"| < M, for all values of x.

1
Thus 1.5;,,15(%%, for all values of n, and the given sequence is bounded

above and below.
1
By §17. 2, iim ja,|" exists.
=il
1
Now let lim |a,|% =pu>0. Ko N
n— v
. ; £\
Take any  for which |z} < 1/, and choose a definite point z, betigeen IE|
sod 1{p. 3

Then p < 1fx,, and, from the properties of the upper limit gb ;ndctermlna-

tion, there is & positive integer v, such that ,\
r .
ja, ) < 2y when n=v. \\
Therefore |2} <1, when n3 v ‘\ w
And

ST T i W) brg in
<|_-l.<1 when 12 1.
i a"i}
Thus the series Ya x"* COnVerges. absolhtely when |z] <1/,
Again, take any x for wh1ch$@| = 1/u.

Then |a, [ﬂ> = for ah\}lﬁmte number of values of =,

Thus |a,z"] > 1 fni“a:ﬁ infinite number of values of n.
And the series ._%x" cannot converge when |x|> 1/p.
1% follows tha.'t\wken P20, the interval of convergence of the series is

.\ . U<z < 1p.

Fmé.liy let 11m lay, [P =
‘Take any va]ue of x other than zero.

hen, by the properties of the upper limit of indetermination, there is &
positive integer v such that
1
Jag | = T-i, when n= v,
Thus lagz®| < ﬁ’ when = v,
and in this case the series converges for all values of z.
Returning to the notation of (111), we now show that

V. The series is absolulely convergent in the open interval — p << X< .



72] ARE FUNCTIONS OF A SINGLE VARIABLE 165

V1. The series is absolulely and uniformly convergeni in the closed interval

wp8Zwisp -8, where § is any nssigned positive number less than p.
—t ; " j
L o] N oL
F1o. 14.

To prove( V), wchave only toremark that if Nis a point x,, where — p < x, <p,
between ¥ and the neater boundary of the interval of convergence, there are
values of z for which the series converges, and thus by(T)it converges absolute.[{
for =1,

N
b J Jd ¥ 1 L}
T 1 ¥ F— A,
CO0M o Mo LS

Fig. 15. « \

To prove (VI), let 3', M eorrespond 6o = —p+ & and x-—:p}—xﬁ’f'espectively.
We now chioose & point N (say xp) between M and theﬁ&e&r&r boundary L.
The series converges absolutely for x=ay, by (V). M

Thug, with the vsual notation, \

Ya w4 mono“ﬂ [ t,'m(hé!r =

But |2, z® |- la, 2™ | +... ,\ v
is less than the above for every point in Ay i’ncluding the ends M7, M.

It follows that our series is absoluteldbamdlinitarmly- gogvergent in the
closed interval (M, M).* And the dum of the series is continuous in this
closed interval, N .

It remaine to examine the behagibur of the series at the ends of the interval
of convergence, and we shalldiow prove Abel's Theorem:¥

VIL. If the series convef&es\ Jor either of the ends of the interval of convergence,
the interval of umformWrgmce extends wp to and includes that point, and the
continutty of f{z), tKe'sum of the series, extends up to and includes that point.

This folluws at, &nce from Abel's test for uniform convergence given in § 67. 2.

Let the ae!:i.eé converge for the end p of the interval of convergence.

Then i ;%}él’s test, take n, =g, 0% and v, = (i)n (Cf. Ex. 1, p. 150.)

We.'th'}}e establish that the series

N\ g F @ + Bp2® 4

L. O0yerges uniformly in this case in 0= x = p, )
9, Bub we know from (VI) that the series is uniformly convergent in
—p+B=Ea=0,
when § is any positive number less than p.

*When the interval of convergence extends to infinity, the series will be absolutely
eonvergent for every value of x, but it need not be uniformly convergent in the
infinite interval. However, it will be uniformly convergent in any interval (-5, 8),
where 5 jg fixed, but may be fixed as large as we please. .

£.g. the exponential serfes converges uniformly in any fxed interval, which may
ha arhitrarily great, but not in an infinite interval [ef. § 65].

V Journal fir Maik., 1 (1826), 311,



166 INFINITE SERIES WHOSE TERMS fow. v

It follows that the series is uniformly convergenl ix the mterval
—-pFdSx=p
And that f(z), the sum of the series, is continuous in this closed interval,
In particular, when the series converges at w=p,
hm f(x)_'f pl=ag+ap+agp®+ .

In the case of the loganthmm series,

log(1+x)=e-322+422— ..., QY
the interval of convergence iz — 1 <x<< 1. R ¢ »
Further, when =1, the series converges. 7\
It follows from Abel's Theorem that Y \J
limlog (1 +a2)=1~%+%-..., )
z—+1 +$7)
ie. log2=1-}+}-... ‘...‘\\’
Similarly, in the Binomial Series, v
A+ =1+mz +i’1‘-(’%'-l) Yo\
when ~l<x<1. \
Y s - 1) L)
And it is known* that POt WA
W —ct:-lbrauhbi h‘ry o g.in

is conditionally convergent when — 1 <~'n&< 0, and absolutely convergent when
e N '\

Hence lim(1+me:1:¥m+?fl(?n—])
x—1 m\ 2!

)
% 2m=1 +m+w +...
in both these cages,. " .
On the other };ai?d;’ if we put x=1 in the series for (1 4.z}, we get & series
| which does ngtygenverge. The uniformity of the convergence of the scrics

i \“\ I-xga®-

ey

"\
is for r five interval ~1==x =1, where  is any given positive number less than 1.

VW

w\i %H The intervals of convergence of the series

g+ 2T+ 3 ar® + ..

and @y + 26 + Japx® + .
are the same.t

i\'} *Cf. Chrystal, Afgebra, 2 (204 ed., 1000), 131.

11f we know that Tim | 2o+t
&n

| e

: ratio-test for convergence, since in both series

existe, thiz resnlt follows immed.iately from the

. U
Jim {502 <1, when Je] < lim | 2|

u=rw | Fpnay 1
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From (IV], it will be seen that we neod only prove that
_ 1 — 1
im {e, [ and lim {na,{®
H—0 R—r
are the same. This is a special case of the theorem established in §17. 3,
sinee m wmt=1.
f=r
Or we may proceed as followa:
We are given that 2\
lag i+ |z |+ o[ +...

converges iwhen |z | < p. 1Y
Take i, 2o that |z )<z < p. O
N/
2 N\
Then 1 2= , 3 z &

N x0|a“u Ty :r',l toe N
is convergent, because the ratio of the #th term to th&p(ebedmg has for its

x|
hrmt -, which ia less than unity,
U

\

If we mu]t-_ip] 3 the different terms of this seneg\b v the factors

|aszol, | anet | ft
which form a bounded sequence (by V)A\ithis clear tha.t the series which we
thus obtain, namely W\'\'W dbr auhbrary org.in

leg|+2 1&3@5*31%76 [+
is convergent when lx | <p. &

We have veb to s}mw that,this ‘last geries diverges when |2 { > p.

But if it converges whe{1 Z==| x|, where [%y|>p, the same would hold
for the scries }
ez | +2 | agad | +3 ez |+
and also for the séries

s'\“’..‘w | @yq |+ | amg? [+ ] @ae* [+ s
gince the tsxmsltf the latter are not greater than those of the former.

But tl}i{iﬁ impoasible, since we are given that the interval of convergence of
the opiniie] series is — p < @< p.

It follows that the scries
N g+ 02?4

As\Nand the series ay + 2o, + Bt -

/ obtained b y differentiating the first term by term have the same interval of
convergence.

IX. Zerm by term differentiation and integration of the Power Series.

Let the power series

(g + % + @t ..

have - p << p for ita interval of convergence.

Let its sum be f{x) in this interval

Tt follows from (V1) and § 70 that

[f Fla)de = aglee — ) + 3 (x 74—z, when —p < T <2 <p.
= ' 7 ntl
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Also from (VIIT} and § 71 we see that
fxy=a,+2ax+Buzx® ...,
where x is any pomt. in the open interval —p < x I p, and these integrations
and differentiations may be Tepeated any number of times.
73. Extensions of Abel’s Theorem on the Power Series.
1. We have seen in § 72 that if the series

Bytajtast ...
converges, the Power Series

o X+ agrt+ ... ¢\
is uniformly convergent, when 0 = z 7= 1; and that, if . QO
flr)=ay+ax+aa®+..., N
lim flay=ag+o,+tg+... . 0
z—1—-0 ( } ¢ 1 3 m\\

The above theorem of Abel's is a speeial ease of the fnllowin;_.f:
Let the series 2, a,, converge, and ay, a;, a,, ... b2 a 8&5&)}&'@ of positive numbers
AN
such thal G?—un<ccl~<{12 « JThen the sene& ‘3 g et 15 umﬁ)rmlj oon-

vergent, when =20, und sff{z)_.\‘g e—rul uie kave lim f(t)= \“a ®
W dl:l}‘auhbl'ary org.it—+0 K
This results immediately from Abel‘ 388t of §67. 2 (cf. Ex, 3, p. 150).

NN

1L In Abel's Theorem and jte extension stated above, the series l a, are
0

supposed convergent. We ipréeeo;d to prove Bromwich’s Theorem dealing

with geries which need nok sonverge.t In this discussion we shall adopt the
following notation: £\
O B NE Y S S S T
Bo=gg+8,+8,+... + 3,
and we wnt&‘(’}or the Arithmetic Mean of the first » terms of the sequence
8¢, 81, 83’.\\
Thus g, =Tttty Bay
\ n n

P\

| \ ‘If: ean be shown (cf. § 102) that, if the series Ean converges and its
v

;e

sum is ¢, then, with tne above notation, lim =8

[rome,

But the converse
does not hold.

N . .
Yf ay, a,, ... are functions of 2 and the series 3, a,, converges uniformly to Fiz) in

- *. = 0 z
a given interval, it follows from Abel's Test of § 67, 2 that lim et COnVergus
uniformly to Fix) in this interval, e

t Math, Annalen, 65 (1908), 350 } "
Math. Soc, 25 (1919), 2‘33 }» 850.  See also a paper by C. N. Moore in Bull. Amer.
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The sequmme of Arithmetic Means may converge, while the sum Za fails to
eonverge.®

Bromwich's Theorem, Let the sequence of Arithmetic Means o, for the

series Sa, convergeto o, Also leb u, be a function of ¢ with the following proper-
il
Hes, when i >0

2, ] . , § @b sitive i s K, ilg:
(a} %"I-|'—\’zi-‘»n]‘~ihf (;p q any positive inlegers; K, ¢ posi ve)

number independent of p, q and ¢ 7\,
{#) lim nu, =0, N .
=y A,
() Um w,=1 O
PR « \/

3

Then the series Zf"’n“n converges when £ >0, amdg IITU %,a"zt},~cr
—

We have Sy=s, =day AN v
81 =28y =81 —8g=0y, !
8, - 28, + 8=y — 8 =ap
- 28, +5, =25~ ss,&(aé; ebe.
Thus N

2 gty = Syug + {8y~ 28)uy + (Swﬂsdbaﬁ’amsm-ary(é‘,.g Bn1+ Sn2)n

Therefure 5: .

oy

_z: tgrty = Sy Mg 4 8y Aupy o 0 8, Nty + 28,80 = Sptiyn— Sp_a¥pyre (1)
L. 7\

But the sequence of z-}:t'i?hmetic Means

¢ &\
N\ Tya Fay Tasoen
converges, and linhg, =v.

nag
It follows\that “there is a number €, not less than [v{, such that
18, [<{n T‘U‘C for every integer .
Also tpowd ) it is clear that
.\’\ e tm (S uﬂ+1}-—ullln (S f-ﬁn_'_g}—“'lm( 1“%1):0' vu“‘.....‘...[2}
W—h

&

\‘ WL g (- U8, 5= ), it 38 obvious that limey, =4, and the series %aﬂ is not von-

U=

\'.'Praent But see the Hardy-Landau Theorem, § 102, II. When hm Fp=0. the
seties 2, a1y, is often said to be “summable (C, 1)” and its sum (€, 1} is said tobes. For

-] dlscu;swn of this method of treating series, due to Cesito, reference may be made
to Whittaker and Watson's Course of Modern Analysis (5th ed., 1928), p. 155.
Euopy, loc. cit., ¥nglish transl., Ch. XTIL
Hobaon, foc. cit., 2 (2nd ed., 1926), Ch. T.
Also see below, §§ 101103, 108,

Ta%u, is written for (u, — 2upey + ¥pgeh

3

X% | My, | are pesitive this condition {a) implies the econvergence of this series.
1}

Hince all the terms In  the series
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Further, the series 3 {n+1)| A%, | converges, since, from {u), the series
0

> Ay | converges.
0
Alsa ﬁ §,0%0, | < Cln+ 1) | At |
Therefore the series ¥ 8%, converges absolulely.
0

It follows from {1} and {2} that

I’D;anu-ﬂ—-}r:S‘,‘A"’-un. TR PR TPRPUPRRP % ) )
w
Taking the special caze a,—1, a1=ﬂ,2—: L=,

wo have 8, =n+1 and wp= S (?H—J}_\. i, N\ "
Thus, from (3} and (4),

iaﬂuﬂ-o-ua:i(é‘ﬂ—{?H- Ther) A% N e [®)
I
. q‘ \.&
Now "=

hm =,
v Wt 1 \ &

Therefore, {o the arbitrary positive number ®, there corresponds o positive
integer v such that "D
S € ™|
|7 o ity g o
Thus | 8 —{n+ 1| < :{K‘v a+l), when wizy
Also | 8} < {n+1)C, for e»@iy positive integer, and (o |Z= €L
It follows, from these i untflltles und (5}, that

So.u <runt*f>:<s = 1038 | + 208, =+ 1))l
N,

~\‘\ 20T+ 1) A, 4;{~ A1) A2yl e (6)

 §

| Bu N7 S (n+1)] A, L < 25n) A%y

SN 2K, BT {a) e {7}
1 An}l tllmodzw =0, since hm we=1, by (v}
A i

Tt follows that, v Béing fixed, there is posmw number # such that

{ |Au“[<:2'v(v+l)()’ when O<tZy and n2r—T1. e 8]
| Thus from (8}, {T) and {8), we sce that

P
! .21‘ Gty =ity | < Yo+ fe<Ce, when 0<i= ).
I

Therefore lim (‘a ty, —rig) ==,
Lol B

And, finally, lim Eaﬂun =,
t—ty

Hm ay=-1.
F— -

sines, from {y},
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TTL. Lot the sequence of Arithmetic Means for the series Sﬁ‘-“ converge e er,
- B
and Tet w, e o=t (or e- ). Dhen the series Yu u, converges, when t = O, and
o ] .
W e, =0,
p—Lty 0 ’
This follows at once from Bromawich’s Theorem above, if e - #¢ {or e -#*) satisfy
the conditions {a), () and {4} of that theorem.
It is obvious that {5) and () are satisfied, so it only remains to esiablish

that {r) is satisiied. £\

iy Lel Uy =it =0 N .
Then Dy =Wy — 20,y Uy ¢ '\...\

=eni{] et N

« N\
Therefere Afu,, is nositive. AN
. p A D

Alzo 2;92 [A%u,f= ?n.’_\"u,, 0

SRty — (B4 DGR,
Therefore ;{;io[;_\_.ﬁ B | =€t an@ the xc.({m“'rt-i.on {r) is satisfied.
{iiy Lt w, =%, =0 '\ v
In this case Azy =g te+ BRI+ )20 - 2,

where < 0 < 2% \ i
Therefori: the sign of A, debgﬂ%%ﬂ&{'%ﬂiﬁﬁwwgﬁﬁ‘ 2).
It follows thst it is positive oruegative according as

. 20m% 0y — (2 0.
Al N1 L
Also (n-{{}) > 124y when # > WITTy
¢e\J 1 1
_ LR
and ’ \‘fm,+8)-: 2y when 742 < I
Therefore —\2“:; einnot change sign more than three times for any positive

value of 1. AW

But it fgligis at once from the equation

::\J“ nﬂ.*uﬂzm—(ﬂ+9“‘!(4(n+6)353—_2#}

thatfa ‘positive number, independent of ¥, can be assigned such that n|A%%,]

i8Jess than this number for all values of .
~\3 .~ Hence X can be chosen so that the condition (a) is‘ satisfied, provided that
\ ’ the snm aof any sequence of terms, all of the same 51EN, that we can choose
from Znafu, is less in absolute value than some {ixed positive number for

all values of 1.

Let Tuifn, be the sum of such a set of consecutive terms.
-

*This follows from the fact that
fla+2hy -2fte+ B @) po s oy,
pETE A

where 0822, provided that flx}, F{=), f{x) are continuous from z to x+2%.
{CE. Goursat, foe. oit., 1 (4° éd., 1823), § 21.)
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Then we have

inﬁ’un:re-i"! ~(r = 1er Ul — (s 1)e— it H 14 sela U,
which differs from
oot — g= 1) — (s 4 D) {e— (17 — e —ls 1 2%)

by at most unity.

But, when # is a positive integer and (>0,

0 <nle~ntt— g+ 1) =2n(n + O)le —{n@% (D f )

<B4 Ot — (4678 A
— 4 \“
<27t A\
Therefare, for the set of terms considered, A Dy
; A%, | <4e14 1. AD
?5 ul R

Then the argument ahove shows that the condition {d) 5 watistied.

IV. Lel ihe sequence of Arithmetic Means Sor mr,’x'sgﬁzs }ia-" conterge to a.
& v

o
Then the series Sa,x" will converge when 0 <z <1, whd
0 )

w0 % N\
-SRI,
wwu&ﬁ-‘ﬂ@ﬁﬁ%afﬁbrg-m
This follows from the first part of (IT) on putting z=e¢—1.
V. Let the ferms of the serieﬁ"Zﬂ;n' be functions of x, and the sequence of
0
Arithmetic Means for this gsﬁ& converge uniformly to the bounded funclion
clz) maZz=". T?gen\}im Sa,u, converges uniformly to olx) in this in-
y i—=+0 O
terval, provided thgi(at, s o function of & satisfying the conditions (a), (B) und
{v) of Bromwich’s, Bheorem, when > 0.

This follows d’once by making slight changes in the argument of (II}.

The theorems proved in this section will be found useful in the solution
of prqblf:r}s in Applied Mathematics, when the differential equation, which
| correspbnds to the problem, is solved by series. The solution has to satisfy

o i i

| oeettain initial and boundary conditions. What we really need is that, a8
- .\ve’ approach the boundary, or as the time tends to zero, our solution shall

have the given value as its limit. What happens npon the heundaries, or at
the instant =0, ie not discussed. (See below § 123.)

74, Integration of Series. Infinite Integrals. Finite Interval. In the
1 discussion of § 70 we dealt only with ordinary finite integrals. We shall now
- l examine the question of term by term integration, both when the int.eg!.'&nd

has points of infinite discontinuity in the interval of integration, supposed finite,
and when the integrand is bounded in any finite interva), but the interval of
integration itaelf extends to infinity. In thia section we shall deal with the
firet of these forms, and it will be sufficient to confine the discussion to the case
when the infinity occurs at one end of the interval {g, b), say z=b.
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I. Let wy{x}, ugle), ... be continuous in (a, by and the series Zu,l(a:) converge
uniformy to f{x} in {@, b). .
Also fet g{x) have an infinile discontinuity al =4 amd g(x}dx be absoluiely

convergent.®

Then P ftx}g(z)dz{z’:_\ﬂ un(2)g(w)dz

From the uniform convergence of zuﬁ(x) in {m, B), we know that its sum
N

i) is continnous in (e, b}, and thus bounded and integrahble.

Also k Jiz)g{x)dr is absolutely eonvergent, since { glx)dx is s0 (§ GI\VI)

Let P lotlde=4.
N ™
Then, having chosen the pomt.we number ¢, a8 small as we pfeaae, we may put
flxy=s,(z} + R (2), "‘\
where | {2} < when 7= r, the same » serving for all valnes of x in (g, b).

But\ S g(x)d:c and \ 5, (2} g(z)dz both n{mt

It follows that l Ry () gla}d also exists)) Jhd that
s wwwdlbraylibyra
! s g@rde={ ﬂ@ig(x)m“( RO

Thus we see that *
1L rw gty & \ ) o) d Bl \ B,(a) gic) |

\'\‘w’ <3 tg{xndx

S <6y When =V,

which proves tha‘{ f;he series 2 \ w,{z) glz)de is convergent and that its sum
w | se) g@}x

Ex, ﬁ_l‘hiq case iz illustrated by

&y

‘o 1
[ log log (1 + x)dw= Z(—li"‘l( logads

\“ 1y [ ortogzde= - — 1
= ?;{(_._.)1?, Slnceh x Ingdx_ (ﬂ’—"_l)z

=2{~1)" 93,+1 ('n.-}-])“]

|
. 1
=2-2log2— %21:-2, using the series for i 2«" 3

§ 8 ~

* It is clear that this proof alsc applies when giz} bas a finite number of infinite

discontinuities in (a, b) and g(x}dx ig sbsolutely convergent.

T Of. Uarslaw, Plane Tﬂgonometry {2nd ed., 1915}, 274
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Here the series for log (1 + =) converges uniformly in 0 .« 1, and
\1 log 2 dur
-0

converges absolutely (a8 a matter of fact log = is always of the same sign in
0<z=1), while|log 2 | o agz—~0.

On the other hand, we may still apply term by term integration in certain
cases when the above conditions are not satisfiedd, as will be seen from the
following theorems :

YL, Let wuy(®), uglx), ... be continuous and positive wund fhe series =ty )

x
A
conwerge uniformly to f(x) in the arbitrary interval (a. a), where i@ g ©
" Further, let g{x) be positive, bounded and infegrable in {a, 2}, ‘,'j.‘ )
Then [ rvg@de=E [ upozs, (D
provided that either the tntegral [ flx)glx)de or the sonles s . at, {x) gla)ds
‘o

cotverges. : AN o

W

b ¢ ¢
Let us suppose that i Fixigl{e)ds convergesa s\

Tn other words, we are given that the repedted limit

wry dbrapi librafysorg.in
TJ [lim 3 ’-réf{«“l]{,‘f(x)dx exista.

= >7>1 ’,

fince the functions u,{%), uy(2) % are all positive, as well as gz}, in{a, a)

[} a
from the convergence of { {”wxlg(x)dx there follows at once the convergence
of NI

P
AN\ .Inuf(x)g(x)dx {r=1,2,...).

Again, let 3\ \ffx) =y (&) + up{) + ... Fu{2) + B, (@),

8 \J
Then i Rﬁi;‘%' (x}dx also converges, and for every positive infeger »
\’\ ™ it soh h
‘ \uf(x)g(“’}dx’“%\ wp(x)glaide =\ B {2}g(a)dBe ..oooomronres m
N g - o et
:"\" y if
‘ ~\ Bat from the convergence of \ fix}g(x}de it follows that, when the arhitrary

| csitive number ¢ has been (,lmacn a8 small as we please, there will he a positive
| number £ such that

I 0&._[ @)z <}e
Al

'j. ‘ A fortiori, 0< \

n(:c}g(x}dxqée, ........................... ("
and this holds for all positive mtegers n.
Let the upper bound of g(z) in {2, &~ £) be M.

The serios ;un{x} converges uniformly in {a, & - £).
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Keeping the number ¢ we have chosen above, there will be & positive integer
v sueh that

O < Rz} a3 {%“_a), when n = v,

the same - serving for all values of z in (a, b - g).

T o<|""r 2 I
s <l Buelg@dn <y ool Tgtagar
€ (b—¢
< {¢, when = \\,{3)
Combining these resnlts [2) and (3), we have ) < ™
1 g W
U< h R {x)g{xide<e, when nZp, N
Then, from. {13, 4 :
2 ww fh 'M}\
0 <\ flayglxydr - 2:‘ p(w)g{z)dr < e \whERL B = 1,
L 1 ‘o
A\

Thervfore l»“f[x}g(x}d:{t :S: r) 1;_,.{1:)9(@5(;;,'\.\
L 1o N

The other alternative, stated in the m:gqnbia.t-ion, may be treated in the
SAME Way. Ww,d bl‘aulibl“ary_or in

Bromwich has pointed out that; in §hfs casc where tha terffis are all positive,
as well a5 the multiplier g(z), the @rgument is substantially the same as that
employed in dealing with the conwergence of a Double Sexies of positive terms,
and the same remark appligd o the corresponding theorem in § 75.%

Show A Plogz,, 2t
Ex. 1. Show thu.t\\ L N _'§L,xﬂ log @ dat

) L1

Q" =S iy
:t\m _ unf‘
:"\'50 6
Ex®N Show that | jogt TP sl L 7"
}::2 Show that _lnlogl__x - 2  n TP 4

-~ ;"“j:.‘]ie condition imposed upon the terms «,{z), #4(x), ... and g{x), that they
\ BT positive, may be removed, and the following more general theorem stated :

I Let w, (), wuy(x), ... be continuous and the series ]2 | (2} | conwerge unmi-

Jormly in the urbitrary interval {a, a), where a <<a<b. Also let %, wy{xy=Ff)x)

* L Bromwich, T nfinite Series (2nd ed,, 1926), 496, and Messenger of Math.,, 36
(1908, 1.

1 The interval (0, 1) has to be broken up into two parts, (0, @) and (s, 1), In
';he first we usc Theorem T and in the sceond Theorem JI. Or we may apply
72, Vi1,
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Further, th g{x) be bounded and inlegrable in (2, ).
Thon ! r@gar- ST vt

provided that either the inlegral \i}r L) 1] glx) | dic or the series

§\Z Vagiz) | [glx)| dv converges.
This can be deduced from {II}, using the identity :

= ugg={o, + fuglig + gl) - bt | Ng] = gl o+ Lo+l 190 O
since that theorem can be applied to each term on the right-hand E:'.'Illf_‘.' '
1 » o1 2N
Ex. 1, Show that log dxr =X{ - I]"‘\ ™ log x dr . \J
o I+x a S 4 ”}‘
gtz o)
ERCES &V
- \J
12 \\.
Ex. 2. Show that ny

{1 ’ 1 de="1 1n-t ' anty 1“1'0.x de=2 (- l—}ﬁ
— loo = — x i . 2t

S0 1+x g x - [ ) la :w' £ N (?F-—.—?,r}-
when p+1>0. W w.dbl‘aUlibl.af'}}"m g-in

Th. Integration of Beries. Infinitel iﬁf’.egra.is. Interval Infinite,

For the second form of inﬁn“ite‘irlﬁegral we have results corresponding t©
the theorems proved in § 74, 24

1. Let w,(z), uglz), ..‘.b&\ E;;:itin-uous and bounded in x = o, and let the series
i:‘,fuﬂ(z} converge unifpumly to f(x) in v Z a.  Further, lot gl) be bounded and
- indegrable in the gr{ﬁ@#&ry interval (a, a), where @< q, and a may be chosen A%

large at we ple’gk}a"," and el \ - glw)dz converge absolutely.
7\ 3

Thene | fegtonde=3[ a gt
Illll E[gfq’proof of this thearem follows exactly the same hnes as {I) of § 4.
Ot T et B
: N Th{xfn-iyr+n}
This follows from the fact that the series
S S
x(x+l)+(m+l}{x+2)+'"

converges uniformly o 1z in 2 =1,
But it iy often necessary to justify term by term integration when either

*1f p>0, Theorern TH can be used st onee.
I 0=>p> ~ 1, the interval has to be broken up info twe parts {0, ) and (¢, 1)

én the first we use Theorem T and in the second Theorem TIT. Oy we may apply
T2, VIL,
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|gia)|dx i divergent or ;uﬂ{x} can only he shown to converge uniformly
-a .

in the arbitracy interval (@, a), where a can be taken as large as we please,
Many important cases ate included in the following theorems, which corre-

spond to (11} and (1T} of § 74:
IE. Let wy{x), wolx), ... be continuous and positive and the series i up{x) con-
1

verge uniformby to f(x) in the arbitrary interpal (o, o), where a may be iaken as

larie a8 we please. : N
Also lef gix) be positive, bounded and infegrable in (a, o). .
Then " rergrae=E ] wmis, R\,

a 1le N
*x = (P N/
provided that either the integral { Flayg{x)dz or the serics %}h w,{2)gix)de
S Y 8
Conver(eg, AN
x &/
Let us suppose that E Jlx)g{zyde converges. "‘\
3 N’

In other words we are given that the repeated lig.i}‘.
o H :’
lira [ [lim 3 u,.(x)]g(x}@:’s}xista.
s o f-rm | N

Since the terras of the series 'Eu,-_(x) are hll‘}gositive, as well as g(z), in x = a,

- ww‘w:dbraulibrary_or Jdn
from the convermence of ‘ J(x)g{z)dathere follows at oned that of

Ja &GY
| ufypllde (r=1,2 ..
T %

Again lot F) =m0 Fugl2) + o+ (2) + Byfa).

Then |

s SJ e
.Rn(x}g[x)cfwﬁd converges, and for every posttive integer »
B

[mf(x;g:(;;;dx_;s‘: [wfh,(x)g{x)dz::{m R(xygledde. “vviinnnn (1)
D\ ¢/ "6 e

But from xfhé'ﬁbnvergence of ( Flayg(x)dz, it follows that, when the arbitrary
& B [

positivgké;ﬁﬂmr ¢ has been chosen, us small as we please, there wiil be a
positim\numher a such that

A o< smgtarte<ie
N/ A fortiori, 0< r R (x)gix)de < be,

and this holds for all positive integers n. _
With this choice of «, let the upper bound of g{) in (s, a) be AL

The series >u,(x) converges uniformly in (2, a).
|

Keeping the number v we have chosen above, there will be a positive integer
r guch that

€ ==
— e, wh =1
0< R, (2) < FH{aa) when n

the same serving for all vatues of « in (a, al
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Thus Cl<i‘1 R, (zlgix)dr <le, whenn “r
otd

But o<| Rg(ede<ie,

and this holds for all values of n.
Combining these two results, we have

0 <i R, (z)g(x)dx <¢, when n 7
i)

and from (I}, N\
0<E Fflayglayde -2 [ upladgiz) da <Z e, when =21 A o
1y T ¢\
» w [® £\ "
Therefore ({ f('x)g(x)fh‘:EL . (2)g{x) di. « \J
Ja 7 W\
The other aliernative can be t;reated in the same way. /% 3

Ex. 1. L] ¢—a% cosh br dr= 22 1\ e—oEg® g if Ualh

Ex. 2. \ue—ﬂ%’coshbxdx 22?1,\- e~ u*xﬁ"‘%‘:

Further, the condition imposed upon 1(xj, j“?z x], .. ancd g(r), that they
shsll be positive, may be removed, leading te fhe theorem :

dbraulibrary.b
V¥ cantmuous @ tﬁe series 3 l”n‘ w)| CORDETRE uni-

TIL Letb ay(x), g},
Jormly in the arbifrary interval (a, aj,.wﬁerc @ may be r‘aken ay large as we please.
Also let ‘5‘ by =f{x). 4
Furﬂwr let glx) be boumie(f and integrable in (a, a).

Then { (@) g () de= ilr un(w)g(x) dz,
provided that eitﬁer fhe maegml E 21, |un(®) | lglz)dz or the series
\"\‘ E::ia |u, (2} lg{z)|dz converges,

O\
Thig\is deduced, as before, from the identity

- \ S g ={ag Tt He 4+ g0} — Dot 4 [ gl — T dig + g} + 2] gl
‘sifice the Theorem 11 can be applied to cach ferm in the right-hand side.

. -|i Ex. 1. Show that \ =% cos b de = 2 $(- ﬁl?)%—?:biﬂ \0 gtz g, if O <[b) <&
F-_ Ex. 2. Show that N @ coa by dr = 2, % (0 ¢ —uwArtgtn g,
- 0

76. Certain cases to which the theorems of § 75 do not apply are covered by
the following test :

Let uyfx), ug{), ... be continuons in x = a, ond lef the series 3 w,{x) conVAFE
1

uniformly to fix} in the arbitrary interval {a, @), where a may be taken as lorge

as we please.
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Further, fef the infegrals
{ w, (x) do, { ug (@) e, ele.,
o ik -
converge, and the series of integrals
r Uy (%) dix vkr ugla)da+ ...
@ @ .
eonverge uniformly in x = a.
Phen the series of indegrals
N\
[ wtode s wwrdue . .
2 A
converges, and the integral \ f(m} dx converges. ‘“\ ’
JRE %
Also { ‘f{xjdxzj wy(edo+{ wa(@)dot ..o N
la a Jau ¢*
i * £ "\\\
Let sale)={ wy(a)do+ L () o onr § snfae.

Then we know that lim #,(x} exists in v g, an(K\We denote it by F(z).

s

Also we know that hm 8,(x) exists, and el d\note it by G{n}.

We shall now show that lim F(x}“;,&%@m 1 ootk exst, : snd that the two

limits are squal. brary.org.in

From this resuit our theorem as ’60 term by term integration will fullow

&t once. RS \

L To prove lim Fix) a:m’st{»"

A

Since lim s, (x) converg{,'s uniformly to F(«) inz Z &, with the nsual notation,

R—ric
we have A\IF(x) —s,(%)] <3¢, when n=v,

the same » gerv ing:fai"'every z greater than or egual to a.

Choose som;\'m‘lue of n in this range.
Then we, h@,&ve Ism &, ) =G{n).

Themf\\e we can choose X s0 that
A lsa(2) —sa(z)] < e, when 2" >0/ ZX>a.
,‘\{B,_it E F{x.&') _ F(x'} [
’ = | Flar) - 5,(27) | + | (@) = 80) [+ [ 80(2") ~ F(27 |
< detfetde
<¢, when o >o' = X >a,
Thus F{x) has a limit as x—00 .

IT. To prove lim G(n) exists.
R— w00
Smce hm sﬂ(x) converges uniformly to F{z) in =4,

| spe() — 8p#(2) § << k¢, when 27 =r=
the same » serving for every x greater than or equal to &.
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But lim s, {x}=G(n}.

L
Therefore we ean choose X,, X, such that

| Fin") - sw(®) | < fe, when 2 = X, >-q,
| B(n"} ~ anr(z) | < ke, when 2= X > a.
Then, taking a value of = not less than X, or X,
| @™y - G(n) |
=Gy - anr(x) | 4 | spe() - au{) | + 1 ane(m) - G}
<he+de+he QY
<&, When »" >n'Z A
Therofore lim G(n} exists. )
A=l

1. Po prove lim F(z)= lim t(n). N
T n—+0
8ince lim G{n) exists, we can chooae vy 8o that RS
R—riy \ § r,ur( . . _ o
x < %€, When % = )
o [ i ¢ ) \ b x\\v}
Again Z‘,E u(z}dx converges uniformly to F(:i"}\ih z=q.
Therefore we can choose v, 80 that O
dbrauljbragy org.in
%J u,[x}dx[<\§e when n'Z vy,
1

the same v, serving for every = gre‘ataar than or equal to a.
Choose v not less than vy or a

From the convergence of{ﬂ?s ntegral E )_, u,{x)dz, we can choose X so thab

K “}%} uf(z)dx] < }¢, when 2= X > a.

But o) / \%}Ea‘(x}dx - P(z)

e ,"&};' =l§£ ?Mz]dt é;w i -2 ["wteie

| . ~“\ N '_E_Hx §Mx)d‘rl+‘v§1§a wplw)dz I +]§J: ﬂ,.-{x)&z,
\ 3 < ke +§e' +§G,

| w6y when z= Xwa.

] Therefore | lim Fz)= z,§ uy(2)dz = lim G(n).

[ IV. Bot we are given that the series
(2} + gz + ..

converges uniformly to f (%) in any arbitrary mt,erva.l
Therefore we have (o o

[f(‘“)dz { "‘1{3)“:“1"5 uylz)dz + ... in x=a.
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Thus, with the above notation,
X
Fioy={ fwya.
Ay

o
Tt follows from 1 that \ J{x}dx converges, and from IIT that
] .

U ftartn (e +{ wirtrs...

N\
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EXAMPLES ON CHAPTER V.
N\ ’ UNIFORM CONVERGENCE,

N\
(Y Let ) ==

7
\ N . z 2 L

\ \ pin? n+x gos”

Show that lim ¢ ,{x)=0, when %=1,

N

anl lim ¢, (#)=2, when x =0,
el
Also show $hat ¢ (%) converges uniformly to zero, when & 2 o, Whete #, 18

any positive number.

2.1 ${x} is continuous in the interval 0=z=1, show th&ﬁxhﬂ‘ wpla) oxiets
in that interval,

Also show that zr¢b{z) converges uniformly to its limit in ¢ o = 2, < 1, and
that it converges uniformly in the interval 0 =2 =% 1, only if ‘?5(1) =0.
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3. Examine the convergence of the series

o i =T
s TS| FEa (TS VA

and by its means illustrate the effect of non-uniform convergence upon the

continuity of & function of = represented by an infinitc series. (Cf. Example
on page 144.}

x r
4, Show that the series ¥ cosech?® ng is uniformly convergent in uny interval,
¥ = x,, where i3 >>0.

5, Prove that the series <\)
2 28 N
"‘2+(1+x2) dyapt Q-
is convergent for all values of x, but is not uniformiy convergcnt n an interval
including the origin. : ”“\ $

6. Prove that the series

N\

] w
0 i 0 35

are uniformly convergent for all values of . % )

@ = N\ .
Y w h : 1
T B ouy=) 1 +n2?” xﬁy}ww ﬁ%%%ﬁi‘g?ﬁ%rlé%mmly convergent 1o ahy
interval & = x,, where 24> 0. \

.\

Also show that, if m is any posmve integer, E uﬂ( )}% and deduce that

the convergence is nob ﬂmforn\m any interval mc]udmg the origin.
8. Find for what ?alm@of ¥ the series E %, converges where

" - g i1
u" {z" + 2 ) (P )
\ - 1 _ 1 .
NG E-DEP L™ (@~ @ Lo mi)

Find glagwhether the series is _
. \{i) umiformly convergent through an interval including +1 ;
N \ (i1} contimous when x passes through the value -+ 1.

'\ 9. Discuss the uniformity or non-uniformity of the comvergence of the
geries whose general term ia
_1-(l4ap (14
T+ i+ i1 +ap
Gyt ey -+
be an absolutely convergent series of constant terms, and let
Sol@)s filz), -
| be & set of functione each continuows in the interval a=x =, and each
|| comprised between certain fixed Limits,

A=SfAxy=B, r=0,1,..
where A, B are constants.

10. et

-z
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Show that the series
aofalx}+afila+...

repregents a continuous function of x in the interval a = v = B.

11, Show that the function defined by the series

= x
% w1 +¥xﬂ

i finite and continuwons for all values of @, Examine whether the series..'&

uniformly convergent for all such valies. \
12. Show vhat if tolx) o {®) +. p \\\'

is # series of functions each continuous and hzwm.g no roots m thb interval

a=a= D, and if A

f z
140012 | 2 1, when =,
NES] (&

where 3, ¢ do not depend on %, then the given series ist ﬁﬁﬁornﬂy convergent
in this interval.

Apply this test to the geries \“‘
142+ (2 = 1}2'+x{:¢ L}(}nms‘

where () < q <1,

o i w,\.\’,': braglibr org.i
13. Using iheinequality Slfl 2 >Z—{;{' waenaﬁ <#FPren

o
show that if 5,) :z,_gmsrx then &, ( )>§

Also show that the sgrw%}l - -STE converges uniformly in 0= x = §m, when

kx=3%; and that i 0\} 21, it converges, but not uniformly, in this inter-
val of = " ”:
14. Let th:{ée}iés § ,(x} converge uniformly te f(x) in the open interval

a4 ﬁﬁ‘ad for every positive mteg:r let hm 1,{x) =1, where ¢ is a point

[ +]
of the u}n interval. Then the series Z‘l COBWTSES and lim f(%) 3% by
F o

~ Tb' Lot the series Zuﬂ(m) converge umiormly to f(x) in the open interval
\ %<& < b, and for every positive integer let lim Uun(x) =0y B8 d hm Lo 9=

Then the scries Z i, converges, and lLim flz}= Ea", with a similar result

g-rit+0

for lm f(x)

16, Let the series Zun{z) converge uniformly to f {x) in the infinite interval

® =, and, for every positive integer, let lim w,(¢)={, Then VJ canverges,
@

oy
and lim flz)=3¥ Lo
1

A—ran
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THE POWER SERTES.

x g
1%. From the equation sin_lx—\ g

Tlov(l -2y
show that the series for sin~lx is
12% 1.3% e
+§ "3"+Z4 5+ when {x| -2 1

Provo that the expansion is also valid when |w |+ 1%

18. From th ; ST
. From the equation tantx —! 14z .

obtain Gregory’s Series, AN
tan-—lx._a: ,}‘xs +%x"1 — ¢ .\ ~

Within what range of x does this hold ? 3\ b

19, Show that we may substitute the series for sinle and tan"l:-', in the
integrals m\\

@& ' —1.p
}fin_xdx and \ tan J'd,
o ¥ lo
and integrate term by term, when |x < 1.
Alzo show that

tainla ®#1.3...2»-1 1 (1 bant o ’ . i
—_— =% _,___, it s . A R
\ V= dz “ I d . o (Zna iR \ Fy de -‘~{ Y
www dbraulibg, 9131 g.in tan—’
and, from the integration by parts o{ ‘—— and 2= prove that these
geries also represent ®

a*

\‘)?b— 1)"

1 flogz| % liog @ |
(wuwﬁ) w | TR
20. T |x]| <1, prove, tb\a.t )
z 4 -4 i
T x x *
E\“ S W R A
Show that the PQ&}:R alse holds for x =1, and deduce that
,\. 1-%-%+1+1—...=043882.
21. Ifk’i\:] , prove that
LN\ o 73 zt
N ‘ logl+2}do=r5-53+g34~

.

| . hoes the result hold for x= 4.1 7
\ 22. Prove that

'nxﬂ.
105(1 x);:-z;ﬁ, t<r<l,
- 1

d;v v
50108(14-5»")'5: i~ )"—1%:, 0wl

1
[% I+x) adx o gn-l
log { -1
‘\0 Og(l—x w2 0<w<l

*When z=1, 1}1_1;11 u:“—l but Rusbe's test (of. Bromwich, loc. cif., p- 33, OF

Goursat, loc. cit., p. 404) shows that the series converges for this value of &
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Express the integrals

1 de da z 1+z\ds
log {1 —x) =, 1 = S
‘tn 0 {1 —x) p _\0 og(1+x) = and L log(l a:) -

as infinite series.

23. Bhow that e R o o oy S SR SRS
Ll P
_L _l_‘*‘._iedz
1
_.73 log {2+ 4/3). :
28
24. Prove thav, when 0Zx =1, zllog 2| =e, ¢ 2\
Henee show D
. at N
{1} thut 1+a(mlogx)+§l-(xlog.'_c}2+... O\ ¢
H £ £

&/
converges uniformly in the interval 0 =2 =1, and )

- L P @ at

ot A — a T W)

(11} bt ‘DW &2 E{ 1) (I
25. Prove that, when ¢ > 1, the series \ v
s 11— x+z¢* )

converges uniformly to irs m tmm%ﬁﬁﬁﬁb?ﬁ“ﬂ? %< L.

Hence show that R N
—a ioxg’-—l - iy
o \\u I +xdx_2( e
and deduce that m\
1 a. ¢ J
e

N \ J
IYERGRATION AND DIFFERENTIATION OF SERIES.
~E

185

26.,\\&6‘79 that the series Z(ag-ﬂax — pe—rf2) is uniformly convergent in

JCA ’7/3 where a, 8,'p and ¢ are po&ut.we and o< y.
o \ \,Vemfr that

A

\ Z(ae‘mx-—ﬁe #Bz ) dop = ZE {ae-nex — fo-~npr) da.

Is \ 3 (ae=ras - Po=rbr) dar= EL (ae=nas — fe-n5z) da
Jg 1
27. If it be given that for values of z between 0 and =,
x acosde

Prove rigorously that
ginz 2gin2x 3sindy

w sinh gx =2 sinh gr T a? 2g+aa+32+a2

—t
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28, Show that if flz}= “n“ ln\,;;ﬁ‘ then it has a ciffercatial coefficient

= 1
cqual to —23:? S for all values of =

99. When ¢ stands for 4 positive number, then the serics

o 'l {b—? o { —_ 1}? u”]'
21;-1 -2—2'1‘";1_',1-"2’ ..‘_. Tt T - 2
are uniformly convergent for alf values of ; and, if their svms are f(z} andl >
F(x) respectively, '.\ )\’
=gl () R\
) _%' Pl dz e s \ \“/
rrp ) 1 d -(___:_ l)‘]"“‘—f‘ “‘( i
ﬁ(x)—ZH d.);( -2y 2 b P >

30. Find all the values of % for which the series
e sinx £ % 5in 2% F ... :~\\J

converges. Does it converge uniformly for thegdlvilucs v For what values
of & can tho scrics be differentiated term by tomn?

31. Let [ . (x):\‘fxw(xﬂ‘b{au%”ﬁr nol %01: EIEY,

1 ,{0) =0, 2 ;.: .

for any positive integer greater than ‘unity 5 and

45;(};::&:3 sini for 320,
=0

= ) ..: w
Bhow that 2 uﬂ(@'gonvergea for all values of = to f(z), where

1
“\‘:\ f{x} a*sin 7 for 220 and f(0)=0.
Also a«l%w that f{x) is dwcontmuoua at #=0; lhat S >} i not uni-

'.L ]
formiy‘convergent in any interval ineluding the origin ; and that f{x)~ : (@)
f“o: 811 values of x.

. \| 32.* Show that the series

Tl —ml (1 -Z 1 T

. _.I_ 2xe —)T2:r e n’-(—ﬂ_]_l)_ze w1 )

can be integrated term by term between any two finite limite. Can the

, Tunction defined by the series be integrated between the limits 0 dnd w1

I 8o, is the value of this integrsl given by integrating the series term by
term between these limits 7

*Ex. 32-38 depend npon the theorems of §§ 74-76.
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33, If each of the terms of the series
o,y () +ugf) +...
is & continuous function of zin = @> 0 and if the series
e wy(m) et ug(a)+ .. (k1)
satisfles the M -test (§ 67. 1), then the original series may be integrated term by
term from a to w.

34, Show that the series
1 1 - O\
m’g'l‘mﬁ‘#u.. =0} R

can be integrated term by term between any two posiiive finite hmﬁ;s\ Can
this series be integrated term by term between the limits 0 ani;l‘}o? Show
that the function defined by the series cannot be inbegrated.}{aetween these
linaits. o\

3b. Bhow that the funetion defined by the seriey ,"’.'\\'

1 1 v
(vap @z’ 500

can be integrated from 0 to %, and that itaﬂ'(a'iue fg given by the term by
term integration of the series. A\

36. Prove that wwik dbraulibrary.org.in

(> 0).

l+z

oo .\

Exzplain the nature of the difficulties involved in your proof, and justify
the process you have used<

37. By expansion u:\p;.;ﬁfem of «, prove that, if {aj<1,
N - e T slog ),
0

3

4 N \ o’x *“. dx i
W . P g -1
N v[n tan—1(a sin z) e 4 sinh e,

ﬂxamin%é\.ééxrefuuy the legitimacy of term by term integration in each case.
Q)
S

,~{3§: Aasuming that Jolbix) =2 T
) 0 {?3.}

), - -
\ show that L e o o(ba)de = PP
when a >0,

XOTE

A valuable collection of Bawmples in Infinite Serios with Salutions, by Francis and
Littlewood (Cambridge, 1928) will be found useful by the student who makes &
&pecial study of Infinite Series and Integrals.



CHAPTER VI Oy
N
DEFINITE INTEGRALS CONTAINING AN A'Riii-’j;‘]:{:gRY
PARAMETER \\ ’

77. Continuity of the Integral. Tinite Interval. [w'ihe ordinary

definite integral r ple, y)de let a, o' be c;\}ﬁﬁé.nts. Then the
integral will be a function of y.* P\%

The properties of such integrals Will_‘li?n found to c.orresppnd
very closely to those ¢ R ]'Eér?é ‘Wwhose termns are functions
of 2 single variable. Indeed thig\chapter will follow almost the

same lines as the preceding omg, in which such Infinite series WeIe
treated. O\

L Ifole, v)isa conkébﬁgus function of (z, y) in the region
..: :.ﬂléﬂ:‘__:’a,’, b;_:y;; b;,

:

u! N\ . '
then j pl, y)ddib o continuous function of y in the interval (b, ¥)-
@ v ¢
."\‘0 . .
Since glap4) is a continuous function of {x, y)f, as defined 1n
§ 87, if,jg"also a continuous function of z and & confinuous function
of g3t
\Tﬁﬁs (x, ¥} 1s Integrable with regard to .
13
Let 70={ 9o, paz.
i

*As already remarked in § 62, it is understood that before proceeding 1'0. ihe
limit involved in the integration, the value of y, for which the integral is roquited:
is to be inserted in the integrand, :

T When a function of two variables %, ¥ is conlinucus with respect to tho 290
variables 45 defined in § 37, we speak of it ay a continuous funetion of (2, ¥}

It will be noticed that we do not use ihe full conzequences of this sontingity in
the {ollowing argument,

188

N
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We know that, since ¢(x, %) is a continuous function of (z, ¥
in the given region, to any positive number ¢, chosen as small
as we please, there corresponds a positive number 7 such that

| (2, 4 +A9) — ¢z, Y)| <e, When |Ay| =,
the same 7 serving for all values of z in {e, ¢').*
Let Ay satisly this condition, and write

fy +4y) =r¢(w, y +Ay)da. ~

N

A
Thon  f(y-+8)~f )= [ y-+9) - ol 9] s
Therefore EN
89 f = late, 5 +09) - e
<<{&' —a)e, when ]ﬁyi{n.
Thus f(y) is continuous in the interval {6,%).

IL If @iz, 4) is a continuous fa{mtwn of (z,y) ina=z=d,

br -y = b, and plx) ds boum &Hda&ﬁ{ﬁg{ﬂfz&g{'n(“ a'), then
j oz, i (x)de is @ cmztmums.sfuﬂctwn of y in (b, ).

Let @) uf e, )i

The insegral exjst, s\fnce the product of two integrable functions
18 integrable.
Algo, with th& Bame notation as in (),

f&( AJ ~f(y) I[w y +Ay)— (e, y)] Yz} de.

LeNj 'be the upper bound of {y(2)} in (a, &),
Thet | f(y -+ Ay) - fly)| <Mla’ - a)e, when |Ay| =7,
~Fhus f(y) is continuous in (b, &’).

8. Differentiation of the Integral.
L Let fy)= J. Bz, y)dw, where ¢z, y) 13 @ continuous Tfunction

of (m,y)ina=o=a, bzy=¥, and ‘; exists ond satisfies the same
condition.

Then f'(y) exists and is equal to r %ﬁ; dz.,

*This follows from the theorem on the uniform continuity of & continuous
function (of. § 37, p. 87).
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Since E_qgj is a continuous function of (2, %) in the given region,
to-any positive number e, chogen as small as we please, there corre-

sponds a positive number #, such that, with the usual notation,

2 |
pﬂ&w _ a9, ) j<Ce, when [Ayl =%,

I oy oy
the same % serving for all values of z in (a, o).
Let Ay satisfy this condition. O\
Then AN\
fly+89)—f@)_ (¥ ¢z g +89) -9l y) 4 &N
Ay « Ay D
o’ N\
=j %(E’%yi@y—) di, where 001,

_{" 2¢(z, ) @ og(e @A?f Sl ¥)
=[G IS L o W
Thus we have <

(fly+Ay) ~fly) r aq;‘g drratngafgéffgg;ﬁﬂy)Hh_q;(’_r _@_)] ‘
"<’(ci"— a)e, when [Ay|=#.

And l:]ns establishes ﬂi\ tim [£ Fy+89) - f) extsts and is
Ay A?f j

equal to j 9P g ab a\ny point in (&, b').

1. Letf(y),irgb(m Nr(@)dx, where ¢z, y) and q] a'reas in (1),
and \ff(ﬂ?]‘d\ Bounded and integrable in {a, a').
Tksn f (%) exists and is equal to '[ % \,{r(a:) dz.

\‘Lei: t‘.he upper bound of |y (z){ in (a, a’) be M.
: Then we find, as above, that

Flu+A)—fly) [“=
e

Angd the result follows.

The theorems of this section show that if we have to differ-

. entiate the integral J. F(z, y)dz, where F(z, y) is of the form

| I

- B, 4} or Bl2, ¥) Y(a), and these functions satisfy the conditions
. named above, we may put the aymbol of differentiation under

< M({a’' —a}e, when [Ayl =%
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the integral sign. In other words, we may reverse the order of
the two limiting operations invelved without affecting the result.

It will be noticed that so far we are dealing with ordinary
integrals. The interval of integration is finite, and the function
has no points of infinite diseontinuity in the interval,

79. Integration of the Integral,
Let fy) :r (@, y)Y{x) dz, where ¢(z, ¥) 15 & continuous fundtion
of (z, u} wm azme=d, bSy=0, and J{z) 15 bounded and/mﬁegmble

in (a, &), O

tien  [! friy=[ e [} o, piordp S

whers 4, y are any two poings in (b, b} "‘\

Let Plz; y)= I P, 3;)%

Then we know that %—_-gb(x, O IS 491,

and it is easy to show tha&%:pdb{) ilbal“ Eﬁo;mglrgél?#g funetion of
{z, %) in the region a;_::r(w’ };.4?;{_ -

Now Let g(y”) ‘?(«”ﬂs ¥) g&(m)dw
From § 78 we k;}g}&?\that

S so=[, ?—4’ Yo

3

O =[" gto, 9) o) e
Al{"y (%) is continuous in the interval (b, &) by §77.
. Therefore J () dy= J I #l(w, y) Yiz)dw,

~\J Where Yo, Y are a,ny two points in (b, §).

Thus L dy Jl (e, y) platde
' =g(y) - 9(y0)
_ j B(z, y) - B, Yol y{@)de

:I U : > 9)%Y ‘L $(z, ¥) dy] W(z)do
:r dz F (3, 4) Y@y,
@ e
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Thus we have shown that we may invert the order of integration
with respect to « and 4 in the repeated integral

r dx r F(z, yidy,
L o

when the integrand satisfies the above conditions ; and in partienlar,
since we may put W(z)=1, when F(z,y) 1s a continuous function
of (z, y) in the Tegion with which the integral deals.

80. In the preceding sections of this chapter the inturvals {a.a)
and (b, &) have been supposed finite, and the integrand bmmﬂ
ineszza,bsy=Y. The argument employed docs notapply
to infinite integrals. o

For example, the infinite integral &L 4

s={ yemae 3

converges when ¥ =0, but it is dlscontmuou\ sat =10, since f(y)=1

when y>-0, and f(0)=90.
Similarly v[ sin 7y g% sh,i,,y"dx
o dbratilibrary org.in

converges for all values of y,‘bﬂt it iz discontinuous for every

positive and negative integral Value of ¥, as well as for y=0.
Under what conditiong \then, it may be asked, will the mfinite

integrals ¢\

IF@\\M wd | Pz, )i,

if convergent when b=y =¥, define continuous functions of ¥ in
(b, 81 Ami\when can we differentiate and integrate under the
sign of m&gratmn 4

In the case of infinite series, we have met with the same questions
andy partly answered them [cf. §§68, 70, 71]. We proceed to
: disCuss them for both types of infinite integral. The discussion
| requires the definition of the form of convergence of infinite integrals
1 which corresponds to uniform convergence in infinite serics.

_81. Uniform Convergence of Infinite Integrals, We deal first
with the convergent infinite integral

{7, pa,

‘ ".. where ¥ (:c, %) i bounded in the region e =z =¢’, b=y="¥, the
" i number o’ being arbitrary.
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1. Fhe dutegral |.F('r-, y)dn is said to converge \miformly to s
ol

value f{y) vn the enterval (b, b7}, o, any positive mumber ¢ having been
chosen, as small as we please, there is a positive number X such that

& i
f(y%_[ Fz, y)dm}<e, when =X,

the same X serving for every vy in (b B A

And, just as in the case of infinite series, we have a usefui test
for uniform convergence, corresponding to the general, prrnmp]e
of convergence (§15) : O

II. A wnecessary and sufficient condition for theyumiform conver-
= LS
, . . NN . .
gence of the indegral j. Flx, y)dw in the ingepidl (b, b') is that, if
@

any positive number e has been chosen, af\small as we please, there
shall be @ positive number X such ﬂm@ \
J. F(T, )dx <E’ g}]ﬁeyul?b?aicy;zém
the same X gerving for ever.y,y in (b, ¥’}
The proof that (11} fetifs a necessary and sufficient condition
for the uniform convergénce of the integral, as defined in (I), follows
exactly the same libgs as the proof in § 66 for the corresponding

theorers in mfu\i} Series.
Fur‘thm‘ R will be seen that if '[ Flz, y)dz converges untformly
wn (b, b ﬁ\z’o the arbitrury positive wumber ¢ there corresponds a

pmm{a hniber X such that
R \\ j F(z, y)dx|<e, when z=X,

the same X serving for every y in (b, b').

The definition and theorem given abeve correspond exactly to
those for the series
(@) Hrgl@) +.o0
uniformly convergent in @ =2 = b; namely,
| B, (%) <e, when n v,
and | R, («)]<e when nizy, for every positive integer p,

the same v gerving for every value of z in the interval {n, b).
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82, Unifdrm Convergence of Infinite Integrals {continued).
We now consider the convergent infinite integral

r F(z, y) da,

where the interval (a, a') is finite, but the integrand is not bounded
intheregiona =z =d’, b=y="b. This case is more complex than
the preceding, since the points of infinite discontinuily can be
distributed in more or less complicated fashion over the given
region. We shall confine ourselves in our definition, and in(the)
theorems which follow, to the simplest case, which is also t-llé.l\nost
important, where the integrand Ffx, y) has points & infinite
discontinuity only on certain lines RS (4,

B=dy, Ao, ver Gy (0= 6y ... <G, WY,

and is bounded in the given region, except jﬁ,‘i\‘.}fe neighbourhood
of these lines. ~N

X}

This condition can be realised in twe different ways. The

infinities may be at isolated poinfR. Ot they may be distributed
right along the lines. ' o

oo dey
Eg. j _GTN P
g. (1) u:/@ﬂ)’ when 0=y=5h.

(ii)\;{:iv—le-«dm, when 0=y<1.
N )]

In the first of thefé;integrals there is a single infinity in the given
region, at the origin ; in the second, there are infinities right along
| the line z=0\from the origin up to but not including y=1.

] In thq’ﬁkﬁnitions and theorems which follow there is no need
| for anydistinction between the two cases.

~Qobsider, first of all, the convergent integral
3 ]
[ 7, yyas,

' }vhere F(z, y) bas points of infinite disconfinnity on z=a’, and
iz boundedina=a=a’ - § bxy=¥, where a<a’ ~ E<a’.

For this integral we have the following definition of uniform
convergence :

I. The integral LF(&:, y)de is said to converge umiformly to
its value f{y) in the interval (b, b}, of, any positive number ¢ having




82] AN ARBITRARY PARAMETER 195

been chosen, as small as we please, there is a positive number y
such that

w'—f
Jf(y)—J F @, yydz | <ce, when 0<E=1,

the same v serving for every y in (b, b").

And, from this definition, the following test for uniform con-
vergence can be established as before :

. A necessary and sufficient condition for the uniform congers

gence of the integral j Flz, yydzx in the intervel (b, b} is 't?z;s? if

any positive wmber ¢ has been chosen, as small as we };Iease, there
shall be & positive number n such that ~.’

| [’ =&
![t If {, ¥)dz

the same 4 servmg for every y in (b, b} 40

Also we see that ¢f this infinite @f,vute.g?'«spll s untformly convergent
in (b, b'), to the arbitrary positive whgber ¢ there will correspond
a positive nuinber 5 such that

<, when (< &% <?"“n,

W \a:\r«:dbra ulibrary.org.in

j “‘-_. Flz, ?f‘)dxf<s, when 0<CE =1,
I-.o.’—g ‘. Y

the same 5 serving for eyery y in (b, b').

- The definttion, andrthe above condition, require obvieus modi-
fications when thts\‘pomtb of infinite discontinuity lie on z=a,
Instead of z=a?\

And when t»h(i} lie on lines x=a,, @y, ... 4, in the given region,
by the dLh‘Q}tIOD of the integral it can be broken up into several
others m"‘w.’hwh ¥(z, y) has points of infinite discontinuity oply at
one of the limits,

['this case the integral is said to converge uniformly in (&, &),

. Wﬁen each of these integrals converges uniformly in that interval.

" And, as before, if the integrand F{z, y) has points of infinite

dlscontmmtv on x=dy, @y, ... @, and we are dealing with the

integral I z, y)dz; this integral must be broken up into several

integrals of the preceding type, followed by an integral of the
form diseussed in § Bl.

The integral js now said to be uniformly convergent in (b, by
when the integrals into which it has been divided are each uni-
formly convergent in this interval,
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83, Tests for Uniform Convergence. The simiplest test for the
uniform convergence of the integral j If {z, y)dr, taking the first

type of infinite integral, corresponds to Weictstrass's M-best for
the uniform convergence of infinite series (§ 67. 1}.

1. Let F{x, y) be bounded tn a=iz =o', by L and integrable
in (&, @), where @ is arbitrary, for every y in (b, V). Then the(

tntegral j F(z, yyds will converge uniformly tn (b, 0), f them ‘m

@ function (), independent of y, such that O
() u(z) =0, when z=2a; o\ 3
() | F(z, 4)| = piz), when s-a and b\ b
and (iii) j‘y(m)d:r exesis. N

For, by (i) and (ii), when &'>z"=a aIIQ\B gy,

U iz, y)dxl r'[r y(m)dm
e, dbraulibg forg.in
and, from (iii), there is a prlth& number X sueh that
" 2\
I (:{,)dx{e, when ">z = X.
These conditions ‘3\5 be satisfied if amF(z, ) is bounded when
ziza, and b=y’ =& for some constant » greater than 1.

COROLLARY, Let Flz, n=olx, 9 Vr(8), where iz, ) 18 br}unded
2= a ands ici y=V, and integrable in the intervul {a, a’), where @

18 m’fntm, for every y in (b, b), Also let J. YAz du be absolutely
cq?}t\zeri}em. Then I Fa, y)ds is wniformly convergent in (b, b')-

3 “© dx ad
\ Ez. L 5, 2P ‘ 0 & *¥ de converge uniformly in y 7=y, > 0.

Ex. 2. !0 e ¥dx converges uniformly in 0« ¥ =Y, where ¥ is an arbitrary
positive number,

TI}_Q Y dr oonverge

o 142

Fz. 3. 51 cos zy da, Ew Si_'li.j::_; iz, i o3 ay I
1 ¥ o 1ot

uniformly for all values of ¥, where « >0,

1L Let ¢(x, y) be bounded in 2= za, b=y=b,and a monotonic
Junction of @ for every y in (b, b'). Also let () be bounded and
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not change sign more than o finite number of times. in the arbitrary
snderval (o, o), * and Ee&j () die exist,
i€
Then [ Pz, 1) \H{x)da converges uniformly in (b, V).

This follows immediately from the Second Theorem of Mean
Value, which gives, subject to the gonditions named above,

’ ! A
[ oo winrze=ate', | viwas s gt 9| weyda,
where & satisfies a<<uw’ = £ =7 2", . \“\
But ¢(z, 3) is bounded in =« and b=y=¥, ~a,ﬁa'~'«j (o) de
EORVErges, M'\'\" ¢
Thus it follows from the relation \V
[ ate ) e D

=o' ]

]Jw\f;(a:)d;c

= \»:ww dbraullbral org.in
thatJ‘ pla, y) (e convugésvumfmmlv in (5y

L 1&(?)6&[4— ’ flx", o)

It ig evident that \j;(&:) ™ this theorem may be replaced by

. N\
Ve, ), 1 { Vol ‘Q\?r converges uniformly in (5, b)

F ) .' 3 -
Ex, \0 & Ty %': W, \ oy U .r: " dx (=0} converge uniformiy in y = 0.
_ NS Int

7 N
I1IL. Ld\z]h(x y) be a monotonic function of © for each y in (b, ¥'),
and tend uniformly to zero as @ increases, y being kept consiant.
AESGJPL‘ W) be bonnded and integrable in the arbitrary interval (a, '),

amz not change sign snore than a finite number of times 1 such an
3

wierval ¥ Further, lol j el da be bounded tn z=a, without
CORVErging as g—eo0

T}aenJ- S, y) Jrlz)da o5 uniformly convergent in (b, b').

This follows at once from the Second Theorem of Mean Value,

* This condition is borrowed from the enuneiation in the Set?ond Theorem of
Mean Vulue, as proved in §50.1. Tf the more general proof is taken, a corre.
sponding extension of {11} and (I1T) follows.
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asin (IT). Also it will be seen that v/, (x) may be replaced by yr{(z, )
if r r(z, y)dx 1s bounded in = a and b7y b0 F

gl k-l
Ex 1. § e*¥ gin = dz, i e=%¥ ¢cos x dr converge uniformly in y Zy>0.
0 10

Ex. 2, 5 sin xydx nd ‘ xa!n m”dx both eonverge uniformly in 5 4, >0
|53

and ¥ = -y < 0 N\
It can be left to the reader to enunciate and prove simllar
A
theorems for the second type of infinite integral j. s yYde

The most useful test for uniform convergence in tlus thse is that

corresponding to (I) above. Q\

1 il
Bx. 1. L 291 dx, l av-1 ¢~= dx converge uniformiim 1>y Sy > 0.
0
\\.
Ex. 2. 50 Slﬂv dx converges uniformly in Q é:\y = 4o < 1

84. Continuity @{,mrmtegfa}¥£r§ltx, yydz. We shall now
consider, te begin with, the» mﬁnlte integral { F{z, y)dz, where

- fL

F(z, y) is bounded in phevregion ¢ =gz =a’, b=y=b, o being
arbitrary. Later we(3hall return to the other form of infinite

integral in which Sblﬁ region contains points of infinite discon-
tinuity.

Let f(?f)J F[‘” y) dz, where F(xz, y) elther is a conbiRious

Junctionlgf (@, yina=x =g b= sy =b, @ being arbitrary, oF isof
the ferm ¢ {x, y)r{z), where @z, y) s continuous as above, and
ij(-’c) 18 bounded and integrable in the arbitrary interval (a, a')-

\ “ Also letI F(x, y)dx converge uniformly in (b, b').

Then f(y} is a continuous function of 4 in (b, &').
Let the positive number ¢ be chosen, as small as we please.
Then to e there corresponds a positive number X such that

j Flz, o) dr|<

the same X gerving for every y in (b, b".

<te, when z= X,

*In Examples 1 and 2 of § 88 illustrations of this theorem will be found.
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But we have proved in § 77 that, under the given conditions,
j‘XF(:c, y) dz is continuous in y in (5, b°)
Therefore, for some positive number ¢,
| X X |
|_[ Fz, y +ay)de~ [ F(x, yydo: <{e, when |Ay|=q.
1 da !
¥ o0
Also f(y):j Fx, y)de +J. Flz, o da. N\
[ X
. T X X :\:\'
s f(y+89)~f(6)=] | Py +o0 o= [ 7o, 9
| Fayspa-| F (o5 o

.«\\
Also we have ]I Fle, y)dz

<%€,

and ij Blav g+ @Qg\e

Therefore, finally, Wi dbr aullbraiy org.in
£y +Ay) £ @Y <3e Fie+ie
& < when gz,

Thus f(3) is eontinuo&é i\ ’(b ).
85, I:nteg'ra,txon Bi\the hltegral‘[ F(z, y)dx.

Let F(aﬂ @ sa,zaefy the same conditions as in § 84,

Tke\ .[ dy L F(z, o) dx~I dx J. F(z, y) dy,

w.’ame Yo, Y are any two points in (b, b},

\ )Lt f(y):J:F{m, y) dz

Then we have shown that under the given conditions f{y} i
continuous, and therefore integrable, in (b, b').
Also from § 79, for any arbitrary interval {a, %), where & can

be taken as large as we please,

[t [ pia, gy ty={'ay | 7w g
& Ya o &
Yo ¥ being any two points in (b, b').
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Therefore

I dx r Flz, y) dy=-lim F dy ‘.I Fio,w)dr,
& g - ot

st Ly

[er. vx

provided we can show that the limit on the rishd-Tand exists.
But

rdy r F(ax, y)dwzrdyj Flor, yydsr- rfﬁf l (e, ) da.
o T Yo 1t S -

sy

Thus we have only to show that

[ * '\".\.
Iim[ dy j. Fig, yyde--10 . O
Z—r30Y g £ A
Of course we cannot reverse the order of these linnjag processes
and write this ag wj\ v

tg a—vmdx

y *
dy | j 5, 1) de,
I ylim | #{x, ) % N

D
for we have not shown that this inversidg™would not alfer the
resuit. \%

S

x e/
But we are given, &%Jlﬁ(@{egwg.iiﬁ uniformly convergent
in (b, b). N\

Let the positive number evbe chosen, as small as we please.
Then take ¢/(% ~b). To£his number there correspends a positive
nomber X such that (\)

o A
H%?“{f, y)dx\-(y—i(-), when x 2 X,
the same X ’Sei?iflg for every y in (b, b').

It follows(that '

&

al
N

Wy o
\ L dy j‘ Pz, y)ds:li<e, when o= X,
i g, y lie 1 (b, ¥).
’ Tn gther words,

. W o -
lim j ffyj Flz, y)dx]:(l.
Vo x -

Fri

And from the preceding remarks this establishes our result,

86. Differentiation of the Integral rF(x, y)dx.

I:“ Flao, y) either be o continuous function of (x, y) the
region a=xa, b=y =Y, o being arbitrary, or be of the form
plz, ) (@), where ¢(x, y) 15 continuous as above, and \jr(x) 15 bounded
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and integrable in the arbitrary interval (a, a').  Alsolet F(z, y) havea

partial differential coefficient :—y which satisfies the same conditions.

Then, if the integral I F(w, y)dx converges to f(y), and the integral

[ ?:1}' du converges uniformly wn (b, b), fly) has a differential

eoefficient ut every potnt tn (b, b'), and

ro=[ 2

= da.
We know from §84 that, on the assumption naméd) above,

N

oy .\:\’

j ?7; dx i3 a continuons function of yin (b, b"). ’“f N
o (O
Lot g(y}—jw @'_E dx o)
’ w 0y
Then, by.§ 85, A
& * &
["apay=| a5 a,
¥ . ﬂ" '@ If:l Y
where ¢y, ¥, are any two pointg f}‘;{”ﬁ(g’%éahlibran-y,org_in
Lef ' Yo=y and” yy=y+Ay.
R BN
Then {7 gty =[N V0, g +49)- B, )
L P4\ /)
Thercfore GONy=1ty +2y) -f),
(& >
where i _f}q +Ay  and f(y):J Fle, y)d=.
\ \2 By) ~f(y)
Thus O\ :&_’t?f_ﬂ_,
x’\..~ g (5} Ay

But ’"I"I,?[:. (£} =q(3p), since g(x) s continuous.
\Q\gﬂ g{&y=g(y) g(x)

ibllows that f(y) is differentiable, and that
~ S -
) et

where 4 is any point in (b, ).

87. Properties of the Infinite htegralj F(s,y)dx. The results
of §§ 84-86 can be readily cxtended to the second type of infinite
integral. 1% will be sufficient to state the theorems without proof.

The steps in the argument are in each case paralle} t-c.) those in th.e
Preceding discussion. Ag before, the region with which we deal 1a

azg=a, b=y=b.
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1. Continuity of r iz, y) d.
[

Let f (?!}-_—r Flz, y) dz, where F(z,y) hos points of infinite
2}

discontinuity on certain lines {e.g., © =y, @y .o ) belween x=6
and x=a', and is either a continuous function of (7, y). or the produet
of a continuous function ¢(x,y) end a bowuded and Tntegrable
Junclion \r(x), except in the neighbourhood of the said Teues, Q

Then, «f r Flz, y) dz is wniformly converyent tie (b, i), faye
i NS ¢

a continueus function of y ¢n (b, O'). A
N

R
Let Flz, y) satisfy the same conditions as 2n () ’

' w a\J
Then r dy I Flz, y)dxzj da &ﬂm, y) dy.
Ve & 1 Y
where ¥g, Y are any fwo points in (b, b’).’t v/
TIL. Differentiatitit' st R6 HIREHAY f@(‘m, y) dz.

IT. Integration of the Integral Ir‘ Fix, y) dz.

w’ N . .
Let f (y):j P(z, y) da, _idhere Flx, y) has poimts of wnfimie
21 24\
discontinuity on certai-gr}ims (.91, =0y, Gy .-v Q) beofween $=0
and s=a', and s ether @ continuous funciion of (z, y), or the produtl
o a Cﬂm’iﬂuﬂuf Sunction ¢z, y} and a bounded and integrable
Junction \{w), ezeept in the neighbourhood of the said lines.

{ =F .
Also I.er\’fl?‘(:c, ¥} have o partial differential coefficient ; » which
satisﬁei\'tké same conditions. Y

\FW ther, let I Flz, y)dz converge, and jaﬁ“; dr comverge whi-
{ oty in @, ). )

Then f'(y) exists and 1s equal to ju :;1; dx in (b, ).

88. Applications of the preceding Theorems.

- Fx. 1. To prove r Rin z dp=T
: \ nox 9
(‘} Let ) Fla) :EB e,'-m:“flgo_zdx (2= 0).

*Far othor proofs, see Bx. 11 and Bx. 12 on pp. 1356, wad Fx. 10 on p. 213
P S
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This integral converges uniformly when a0, (Cf §83, IIL.)
for e~a%fx i3 & monotenic function of ® when 23>0,
Thus, by the Second Theorem of Mean Value,
i g—ai —ai’ —ag” et
1 g—-—sinxda::e . -F Elinxd:i:+i—iai gin x dex,
& & x 4 A

e

where Q<2’' = £ 2"
Therefore
L

lz*

A e—ax | [E e—at’ "
sinedr| == - [ sinxdr] +-—pr \ sin x de
2 |l 1l

—at Vs o
<4 pha Since% ‘q sin xdx] 22 for all valves of pandy,
p o
4 \..\'
< O, since a:= 0. £9
X
| : r 3 ¢ {
It follows that r:) g—ax ?l—zfdx e when > 2k v
Jx 9 |
provided that X > 4fe, and this holds for every a greater than or equal to 0.
This establishes the uniform continuity of thedntegral, and it Iollows from

§ 84 that F(a) is continuous in «= 0. g

o N,

Thus F{0)= lim e:,g% &[ﬁm dz,
a—s ?«»}?&dbrﬁ:ulibrary\org,jn

- PN .

. sinz A Wi sin

.8, 5 ﬂ--dxr; hm[ g—af——"dg,
9

al a— 10 &
" .’v

(i} Again, the integral \ ( e—azgin xdr
N\ _
is uniformiy convergy t@u‘x Ty >0
This follews as abp& and is again an example of § 83, TIL.
Thus, by § 86, wheh a >0,

A/ =5 ginx
{ F’{a)'—_io a}(&"c‘x—x‘)dx

x:\'":
A& . .
’\\w S iu e —o gin x d.
R\ ) :
'..@ut' d_xg—ax(cogx.;.asmx):-{a2+1)8‘ﬂai11x.
° m

Therefore L‘ e—atgin xdx:&-le.
Thus - Fia)= i
Aund Fla)= - tan™ta+g

sineo im P(a) =0.*

—_—

*1f & formal proof of this is required, we might proceed a3 follows:
Let, the arbitrary positive ¢ be chosen, as small as wo please.

N
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It follows from {i) that \ sﬂn_x du 2
Ex. 2. To prove

5:%? dx:% e—o  and {: i?i]n;iz! dr 3 r] coe ) TN
(i) Let Alay= ] ‘%‘:r da.

The integral is uniformly convergent for every «, so that, by §84, g} &
continuous for all values of 4, and we can integrate noder the nlgn t)fs Qltc—
gration (§ 85).

« :"\

() et $la)=|" fia) e A
l o ‘
Then ¢{z) is a continuous function of ¢ for all values of u\h},d‘]}
@ "‘\

Also q‘;(u)zg dx | P da 30

- sinar N

o #(1+2%) \‘

(iii} Again, we know that f7(a) will be.equn.l to \ -l--fE-fz sinqrde, if @
{ LR

lies within an interval&mmmﬁﬁgfﬁ;ﬁrgpgoiﬁ-his integrai,
But

€ AN . ®
iz monotonie when x 2N and 1 — =0
e 0 .1, od lim B

- F—r-a l
NS

Sinee (‘_e-'ﬂﬂ' E?:Ed;c cugt%?%es uniformly in & 720, thers is a positive namber
Jo XA

X such that N N | [“’e sinz

%

dx[/ e,

X
and this nembedX.ds indspendent of a.

> Dl

Also we cafiglionse @, independent of «, so that

&
E"' st nx
e—a
vl

\../
p

g g X gin 2
'"Qgﬁt E &— ngdxz,q—az“ Fsulxdx.f_c—n.x i ﬂxdx
\ K & x lgo®

- dx ‘{35

DN\ g ’
' \ ’whem pEiE X
And we know that

e

Jan

dx

< for ¢ > p = 0- (cf. p. 222).

LEX
Therefora 'I K ¢-az il L da ‘ < Rre—aTy,

REY

Thus we can chocse A so largs tha,t

( F—"a.'ﬂ?gl,x.&x‘{%s, when o= 4.

AF

1t fellows that l io oo El}—:r dx l <dtetfetle, when o = 4.
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Thug we have, when 2" >2" =1,

[‘E’Sin ox de+ _xiﬁ [:’m ax dx,

7 sin ax dx = 4
% _1+J’:’2_9; 1+

It follcm g that

x| By & e
| g i e do =g | e e o Le sin & d
. Py - W
Therefore i T sin ax d:cl = ey N
Thus \ 1 , 8in az dz is uniformly convergent when ar‘*dn>0¢ m&‘ :
Fa)= - | i sin orda vi‘aw
A 3
. N — o 4 ’ 4 ~“
{iv) Now PH{a) Lf(“}da \‘,m\.\\
Thercfore D{ay=f{a) O .
and =L =-| 1 “’f{hi’.ﬁx"dx-
= n sin oz
Thus $lay=~ E, 3 dz
P (e} { W&l' ulfbrary.org.in

__[haar,, (" sinas
= L, i “L ALEH
- 1‘;_’
.m\ﬁ * 5+ Plak
This result, has been\éé?a.‘l’a]jshed on the understanding that a >0,
{v) ¥ram (iv} e }mve
:C\ J q‘; al= Aga—!—Be"fl-]-—z, when a >0

o S/

But fﬁ(r‘!{isu\s continuous in ¢ =0, and G{0)=0.

o\Q,

The \fofé lim Bla}=0,
n—=
) w
&n\d 4+ B + Z =
\ Also ¢{a) is continuons in a= = 0. and $)= Z_
Therefora A_B- : o
It follows that A=0 and B= __?2[.
Thus @la) =g(l —e—4), when a>0.
And Ha) =4‘J’(a}=% ¢—=, when a>0

Both these results obviously bold for a=0 as well.
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Ay

Fx. 3. The Gamma Funclion Yin) = \ e Tx" Y dw, v =0, wend ils derivatives,

(1) To prove T{n) is uniformly convergent when N .= n 12wy = 0, however large
N'may be and however neqr zero ny may be.

I
When n:= 1, the integral \

R

only at the upper limit. When 0 < n <1, the integrand becomes infinite af

x={0. In this case we break up the integral into

e~z 1z has to be cxamined for convergence

" o
\ e ¥z ldr -1-\ et e K
a i 7 AN
1 .
Take first the integral ( e Tt Ldr, \,,\
Ju N\
When 0 <a < 1, Plzanel, im0l {4H)

Therefore iRl I e Tl i o> D ’\

Tt follows from the theorem which corresponds to §63,3/ th1t e““’x“‘l da
converges uniformly when » = #n, > 0.

' £ \':
Again consider { ez gz, w08 ’~~

1 ¢
When @1, e TZ N, DY R N
Therefore gmTyn—1 =5 e'%’\' LSO < n s N

It £011(ms az above (IS &dg?:" ﬁ‘f'{ﬁiﬁﬁe‘i‘% i gz converges uniformly for
O<n=N.

s"

Combining these two results{*we see that g =227 dx converges uniformly

when N & nZng>0, howe‘%r large N may be and however near zera g
may be, N

{ii) To prove T'(nj ‘.—Ai e %" oy x dz, n>0.

We know tha,{;" hm (a7 log ) =0, when r >0,

N
80 that the«mtegrand has an infinity at =0 for positive values of n ondy
when 0 a0 1.

Bllﬁﬁ'hel‘l O<axl, =1 gng—1, if nE 0,0
’J(hefefore e—axn— Illogz‘l,,_xnn-—i“_on-xg if w20

) Aud we have seen (Ex. 7, p. 133] tha,t

:t"o—l log = dx converges when
0<ml.

1t follows as ahove that | e-sqn-t logzde is uniformly convergent when
nZ a0, °
Also for R e~*x%1 log x dic, we proceed as follows:

o1
‘When x>1, an~1Ze¥-1 §f Q<= N.

Therefore e—axr—) loge Ze~zx¥-llogx

<e—zx¥_ since lng{ 1 when x> 1.
X
But 5 e—%z¥ dx is convergent.
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Er
Therefore [ ¢ *x"~1lag x dx iy uniformiy convergent when 0 < n = ¥,
h

Combining these two results, we see that K eIy ogrdy is uniformly

convergent whoen N 25 n Z2 0y, > 0, however ]arge N may be and however near
Zer0 f My be.
We are thus able to state, relying on §§ 86, 87, that
Rl
Iny= \ e 2t log wde for n>= 0.
1o N\
It can be shown jn the same way that the successive derivatives of I'n)
can be obtained by differentiating under the integral sign. e\
. NS
Ex. 4. (i) To prove i log{} - 2y cos x + 37) du 1s uniformly conve'x;qém Jor any

infereal of y{eg. BL y 2 b} ; and (ii) to deduoe that E %t{cdx—- —4wlog 2.

(i) Since 1 -2y cos x +3? =(y — cos )% +sin’z, this expression is positive for
all values of v, y, unless when x=m= and y=( —l) W 0, £1, +2, ete., and
for these values it is xero,

It follows that the integrand becomes mﬁnﬂ% &t z=0( and x=u; in the
one caso when =1, and in the other when/j= 1.

We consider first the infinity at <8¢ dbraul ibrar

Ag the integrand is bounded in an}f sirip 0= a3 % ere f < m, for any
interval of ¥ which does not mclude y,— =1, we have only to examine the integral

{ lp—g(l ~2ycosx+y2}dx
N ¥

in the neighbonrhood of 3:‘1
Put y= 1k, where |} = @ and a is some positive number less than unity,
to be fixed more d(’ﬁm{;ely Later.

Since P\ % \ log(l-—2ycos:~:+y"’]clx
Nes i
) "I (1—-003:c+ ----- )dx+zlug2(l+k),
N I, 1o S[T+H)
it is cIe:ar that we need only diseuss the convergence of the integral
'"‘:;\' rlog(l—cosx-f-——kf--—)dx-
\ ) | s 2{1+4)

Take a valuc of (0 < a < 1) such that o 7— z gt

" > s Z 5 ince 4l Sa.
* ~ 31— a}—2(1+h)—0 since (A=
o et fi==cos™ 2(1 ay
% will be scon that, when [h]Zaq,
B
0<1-cosw= I -coswtgry 3= =

brovided that 0<a = 8.
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Therefore, vnder the same conditions,

k’g(l TSI I A e Jogfl v S

But the p-test shows that the integral

r log (1 —cosx)dr
g

converges,
o8 R
It follows that ‘\u ]og(l —cosx+ 901+ h) ] e N\
converges uniformly for |A] 22 e [C §83, 1.} '\' SN
o N\
And therefore r log {1 — 2y cos v+ 4 de A W
LH

converges uniformly for any interval (b, ) of ».

The infinity at z==7 can be treated in the same way,; MN Thc wniform con-
vergence of the integral \4

r log {1 -2y cos = +5%) dityy J
Ay W

is thus established for any interval (b, J) of 1‘;~“

(1) Let \f__,(\?,)w_ b}% Lbran‘?? 31358 ) de.
We know from § 70. | that A:ﬂ,
Fla)=0, ‘?:"3 when || <1,
and Fgy=ileg s when ly|=1.

But we have just seen thr?b the integral converges uniformly for any finite

interval of ¥,
It follows, from § 8;}, that

27 fw=imi=o
sd O A== lim S)=
“\s. y——1

51y ={ Tog 21 - cos 5}z

.\ ) =27 log 2+ ZN log ain ; ¥ dx

P
N

=27 log 2 —-',—4\ L log sin @ de.
g A
Thus ( log sin 2 dxr = — §r log 2.%
-0
From f{—1)=0, we find in the same way that
: m
NT‘F log cos x de= -} log 2,
o

a result which, of course, could have heen deduced from the preceding.

*This integral was obiained otherwise in Ex. 4, p. 131
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89. The Repeated Integral \a' dx L f(x, y)dy. It is not easy to detersine
gencral conditions under which the equation
w3 i ate . d _ 0 d =
. .[m ¢ .L;ﬂ:r y)dy L? Y Lf(x, vyt
is sutisfied.

The problem iIs closely analogous to that of term by term integration of an
‘nfinite series between infinite limits. We ghall diseuss only a case some-

what gimilar to that in infinite series given in § 76, £\

Lel fiz, y) be a continuous function of (x,y) in v =, y=b, and let ‘the
tntegrals 3 2\,

b et @ [rapew O
s . 3
respectively, converge uniformly in the arbilrary inlervals .“f ™3
bEZyEY, aZ=eZal Y Y
w0 o 3
Also Tet the inteqral {iii) [ dux ~b Sz, y)dy
S . '

converge wnifirinly in y 22 6. AN

Then the inlegn rd.s\ ..\ e

ﬁ rh:|| J‘{x yidy and { j ‘: rﬂx y)dw

. www dbraultbrary org.in
exigh awd are equal, < y-org.

L]
Sine we ate given that \ f{x},y)dm converges uniformly in the arbitrary
NG .
interval b2 w217, we knog;:‘from § 85 that
fu NP [ ¥
|ty l j,‘(&i,g)dx:\ da [ Flz, y)dy, when y>b.
Ny K\Y e M
It follows ihat :
¥
& || (h; L Fla, yidr= hm i [ Sz, )dy,

prox idesd 'th?& ‘t"h: limit on the right- hamd gide exists.
L\"\e %he existence of this limit, it is sufficient to show that to the
*"Tblt(ﬁxx Jositive number ¢ there corresponds a positive number ¥ suoh that

\ \ dz \ f(x 4;)(3!3;[45 when >y =Y.

r'\\’ e/ | <t II
\ / But from the uniform convergence of

j ax ! iy

|l dx \ Fl, y}dy| < de, when 2= X, coormemeniinenens {n
I 1
the same X serving for overy y greater than or equal to &
e
Also we are given that \bf(x, i) dy

is uniformly convergent in the arbifrary interval {2, a’).
o1,
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Therefore we can choose the positive number ¥ go thut
ey ! ¢ . WV
“y‘j{x, y)u’-y‘< 3K —ay when ¥ oy LY,

the same ¥ serving for every xin {a, X).

Rt \ oy
Thus we have |i\ dx \1{ S, y)dyi{ I, when o7 =y o Yo 2
S .
But it is elear ‘P.-]l:l‘t\ ) ' » 5 A
= o I X - . 1
BL Y . o n r, fop et el 1 flry s i
_\a e _\fo fix, n)dy _\a di _\y,,f(-t, HILIR \\ e _\bf(* iy -1 \ ; \fl\f
Therefore from {13 and (2) we have :"\ v
N/
- . \
| d= K”,f(a«, -y)fi'.ffﬁcl%“r%&-%-%é N
.0 R s p

<, when y" > ?a\\ /¥.
We have thus shown that

\- rh;\ f(.r y)d‘a,_]nnl dr( (}y}d’u_ e B
I remaing o prove that N\ “,\

lim \f dx R (o, v{)d? gu d'c \mr‘(x H}G'J.

= rwrw i braul ibrag
iet the limil on the left-hand side .b.enf'

Then ¢ being any positive nwuber, s small as wo please, there is 4 positive
number ¥, such that

i NS
l i- L dﬁ\ﬁ‘b’f(x, yidy \ <}, when g o ¥ e (4}
Alse, from the uniférm convergence of

0= v
.“"I d’-x S 9y, when y =0,

| L D

we knew tha(’f.}erc sa pOblthG number X such that
\*‘% 'fx\ fiz, vydy ~ H dx\ fiz, y ==w|< Le, when X' 2 X, .o dB)

ﬂlm&me X serving for every y greater than or cqual to b

] <\ Choose a pumber X’ such that X' 2 X = a.

o
Then, from the uniform convergence of I Sz, y)dy in any arbitrary interval,
o

E we know that there is a positive numboer ¥, such that
: A '
s_ -]__(bf{«“:, ¥idy— ( fla, y}dy “"“3(X’ &y when gy = Ty,
4 the same ¥, serving for every x in (a, X'),
! AT ow i pw !
Thus | \m dx kbf(f-':, ¥hdy —R de \bf(:c, ) dy | < }e, when 2= Fgo oo {6)
. - -G B

Kow take a number ¥ greater than Y, and ¥,
Equations {4}, () and (8) hold for this numher ¥.
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But

R
11_\ dzx | fle, vdy
(- 1S

X
&

=[1- \dx |, fiz, ay [+ [l fnyay-| o | ) |

| Vae s - ax | e
< L4 1e+de, from (4}, (5) and (6), ‘ )

< & ~
This result holds for every number X’ grester than or equal to X.
Thus we have shown that 2 AN
X r 20 - a1 7'\ "
i= hm\ dxi flz, y)dy:\ dx[f(x,y]dy. « \
o B Ja JB ‘s,}‘
Algo, from (3), we have e\
el o X A , ‘\{
Can e, may={ do) 1t 30
S 1t Jb la
wnder the conditions stated in the theorem. )

A\
Tt must be noticed that the conditions we haye j:}ken are sufficsent, but not
necessary. For a more complete discugsion ‘ef tba conditions under which the
integrals OO

| ]t 1 v mliorg in

when they both exist, are equal, }i"eféi’ence should be made to the works of
de la Vallée Poussin,* to whom the sbove freatment is due. A valuable dis-
cussion of the whole subjest'is*also given in Pierpont’s Theory of Funciions
of @ Real Variable. Thgzg::[uestion is treated in Hobson's Theory of Functions
of @ Real Variable, bu\i}‘o'm s more difficult standpoint.
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EXAMPLES ON CHAPTER VL

L
1. Prove that ( e—¢7%Jx ig uniformly convergent iu ¢ @, 0, and that
‘o

i Ez_-fa’ is unifermly convergent in @ %2 0, when &2 0.

2. Prove that \ s smy:n,f dx is uniformly convergent in y 7y 0, and

N
that \ o

sy;ﬂ dx is uniformly convergent in y .70, when = 0.
il

o N
RE )

. . NS
3. Prove that \ e 2g%—1 pos ¢ dr ia uniformly converment in the\ipterval
‘o

L ¥
.

@ Zay>0, when n2= 1, and in the interval a = 0, when 0 < n K 3
a £ {..
4, Prove that K e~zR—L ginx dx is uniformly (_'.01'1\"(‘.1‘{._2(331} i the interval
== ¢ty 0, when #n = 0, and in the interval ¢ -0, wheq S
5. Using the fact that ‘ m%ﬂ; dr is uniormly¢ }om wrgent in

o A\

Yoy >0 and y-_«yoql)

show that ‘ m&y Qiﬁlifbiﬁl'l'y eﬁﬁvkq‘&,mt in any interval of ¥
which doeq not include y= ta. N

s.’

6. Show that {1 R (1 v\%"mu)sm_xdx

(11) E\e n(cos axxcos ba) dz, b,

are uniformly convergent for y = 0.

T. Discuss i;}.rgumform convergence of the integrals ¢

Than—1 ey d
(Q\iox\/“ xs)d:c. {ii) L(l +-'~“g?lg)i/(1 = {iii) E av de.
.“\ ﬁv} E _ld.x.

-~ log = ) \ wllog w)* de, n> 0.

8. Show that differentiation under the integral sign is allowable in the
following integrals, and hence obtain tho results that are given opposite each:

e R
) 1 a::::a PNTIRE \‘:(xﬂfZ)Ml:; = 2?*?35.52::*_%”
{iii) lx”d.r_—_}_ i’ > ~1; : E: #{ —log :\:}mdxzm_—ﬂ;;m,’r



vi) AN ARBITRARY PARAMETER 213

9, Wstablish the right to integrate under the integral sign in the followi
integrals : 8

(i} \ e~8%dx; intorval @ =gy > 0.
Bl
.
(i) l e~%% cogbedx; interval @ =y >0, or any interval of 6.
Al

(i) 1| c—“ sinbzdr; interval g ==, >0, or any interval of b.
1 N\
vy | et de; interval @ =ay> — 1.

R ¢ .’\ } §
. . . 7 e\
10, Assuming that LJ e4r gin by dx=m, a0, show that \ \/

l ‘&
;,)—tan“f g>,f>~0
~N

-

s
[ gk —pog

- sin bx de = tan~1 7
-

Deduce that (i} 5 1;2 7 gin br dg=tan—d ‘g v
\z
——de=1m, b{ﬂ

s,o

\ sin bx

(i1}
11, Show that the integrals {
& w b li ral‘y brg in
_llln 8% pog b dr=- 3+b” {3”"‘% l}) i a0,
can be differentiated under t.hi“mtegra.l sign, either W'l’sh regard to a o1 b,
and hence obtain the values aof

E ,ne—?x co8 b dz, r:ce—fw sin by dz,
AN o
£ 8 * %0 pos b dw, [ 22e 0% gin b die.

Sl

A/
12. Lot =l T eda
Shc@}that Fiiyy = \ gin ay &= dx for all values of g, and deduce thab
) :"\i“ f(?)ﬂ Flog {1 +47)
\\“ 13. Let Sly)=] o~ con 22y e

Show that f*{y)= — 2{ xe-2° gin 2y dx for all valuesof y.
Jo

On integrating by parts, it will be found that

£y +2y fly)=0
From this result, show that /() =1n/we-¥, sssuming that {3} =wm

e r ¥
Also show that | dx~ e cos 2ay dy = (nf (w)dy
) Rl .

o . "
and deduce that \ e E.m_fx—ydx-_—\/n-( e-¥ dy.
Jo

Ja
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14, Let T/ = e—ezgnt cos by dr, V= e 20" Tuinhidy,
Rl Ll
where g >0, n>0,

Make the following substitutions :
a=rcosf, Bb=rsind, where —iz-<10-Ilx,
re=y, Ur=wn, Vit—wn

du i
Then show that B My g
From these it follows that u +n?y —{h AN
die .,,g\ 4
Deduce that w=D'(n) cosnd, p=1"{n)sin no. A
Thus U=T(n)' cos ?LG V=T(n) sin nf) ) :‘/} 3

rﬂ <
N\
- Also show that, if 0<n<], lim U= \ z?1eos i’u,ch\,\\ 4

i}

Iim V= g e 131 4:}.::
a—>0 DQ

And deduce that {’ \

(n) cos T yein
w {7 cos bx ” g 1 89_11 b 2
(l) .o gm dr = ” ; ﬁHx ’
o8 T P sim
i E z & “\/2 -l{\‘.@

[Compare (:ngon, Treat-a,ﬁ{‘gn the Calcuius (2nd ed., 1908}, 471.]
15. Prove that

pal ( fﬂ ary
E;ﬁ&{'b e *sinxdy = \ o a;\ €% gin x dx,

where b is any»pés}"tlve namber.
. A\

\v
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CHAPTER VII

FOURIER’S SERIES O
90, Trigonometrical Series and Fourier’s Seriegp\We have
already discussed some of the properties of infinite scries whose
terms are {functions of z, confining our attention'chiefly to those
whose terms are continuous functions. N
The trigonometrical series, 2\
2y + (e, cosz +by sinz) +{ay pdé‘ﬁ’x’{—bg ain22) ey oereee (1)

where a,, 2, b, ete., are consta‘:r%ﬁ%dglgﬁééﬁf%p%rgfiEuch series.
Let f(«) be given in the igtesval (-, 7). If bounded, let it
be integrable jn this interval: if unbounded, let the infinite

T

integral J flx)do be absolutely convergent. Then
. K™ -
j‘ Sfleos na' dx’ and I f(a') sin na’ die’
_ -8 -
exist for ali waltes of n. (§61, VL) _
The t’%g’t)ﬁometrical series (1) is said to be a Fourier’s Series, when
the cogffi lents ay, dy, by, ete., ave given by

d i}}'%:i—r r 7rf(:.~;’) da’ and, when n= 1, ]
\ / 1 1 (" N [ |
aﬂ:rﬂ-_J\ ’rf(x') cos g’ da’, b,= %-,[_,,f{m ysin na’ d ']
These coefficients are called Fourier's Coefficients or FourleF’S
Constants for the integrable function f(e}; and the Fourier’s Series
18 8aid to correspond to the function. .
This nomenclature is used quite independently of any assumption
8 to the convergence of the series (1) when Fourier’s Constants are
substituted for thyy Gy, by, €tc.
215



The most important thing about Fourier's Reries is thaf, when
f(x) satisfies very general conditions in the intersul (==, o), the
sum of this series is equal to f{z), or in special cases 1o

e +0)+f(2 0],
when z lics in this interval.

If we assume that the arbitrary lunction f{r}, given in th
interval { -, 7), can be expanded in u trigonmmctrical seriessob
the form (1), and that the series may be integrated term hf rm
after multiplying both sides by cos s or sin wr, we obifin these
values for the coefficients. \

For, multiply both sides of the equation

X

4

J@y=ag+l{a;cosz+b sinz) 1 (e, cos 2o SHhAn2s) -...,

) ,:<;r LT, aerenenns (3)
by cos nz, and integrate from — 4 o . \’\
Then j f{z) cos ne @7,
. R \-.rww,d_braulib{ 'Zy'k?rg.m .
since co8 i Co8 ny dm  sin ma cos nr de =0,
o .

A\
when ., n are different iQteéérs, and
COT cor
& j. _ Los?ux dx=1r.
Thus we have(")
)

v
::\'“'u":;'j_,,f(x’) cos nx' dx', when n1.

m
N b?f:';_j- Jysin na’ de’,
L 3 . o

1 E
ao=g|  fyar.

Inserting these values in the series (3), the result may be
written

f(’-c}=21?r .r_wf{:c’) dz’ +1‘r i?r_ f@')cos nia' — ) &',

I8 } — T SR A et (4}
This is the Fourier's Series for f(x).

If the arbitrary function, given in (- . ). is an even function—
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in other words, if f() =f( - ), when 0 <@<7—the Fourier's Series
besomes the Cosine Series :

e AT 2 w
Jflz)= ,“_'Lf(x ydx +,;I'_ }T,CGS L Lf(ﬁ') cos nx' dz’,

0oz e, {(5)
Again, if it is an odd function—ie i f(z})=—f(~2), when
O<x=I7 --the Fourier’s Series becomes the Sine Series : N

. 2. T o £ ot e A
s} -_7_\; smm:J J@)sinne'dy', 0oz L0 éﬁ)

The expanaions in (5) and (6) could have been obtalned \m the
same way as the expansion in (3) by assuming a seriég in cosines
only, or a series in sines only, and multiplying b}’"{}QS\?‘H} OT SiD 7,
as the case may be, integrating now from 0 todm/

Further, if we take the interval (-1, l)ahstead of (-, #),

we find the following cxpansions, coqespondmg to (4), (B)
and (6} :

J=g| ferie xﬁmﬁw&u@nnﬁrm@m

O S A (1)
S Jf(s)dsg—i ZJGD‘o jf(a: cos xdm,
$ 0=zl .....(8)

Fl -—Z\Y‘sm——xjf{x smhg--:r: 'de', 0=zl (9)

However / Jihis method does not give a rigorous proof of these
very Ulﬁgortant expansions for the following reasons :

{BAWe have assumed the possibility of the expansion of the
2\ D funetion in the series.
A% (i) We have integrated the series term by term.

This would have been allowable if the convergence of
the séries were uniform, since multiplying right threugh
by cos nz or sin nzx does not affect the uniformity, but
this property has not been proved, and indeed is not
generally applicable to the whole interval in these ex-
pansions,

(iii) The discussion does not give us any information as to
the behaviour of the series at points of discontinuity,
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if such arise, nor does it give any suggcestion as to the
conditions to which f(z) must be subjict if the expansion
ia to hold.
Another method of obtaining the coefficicuts, dnc to Lagrange*
may be illustrated by the case of the Sine Series.
Consider the curve

Y=a,8in % +a,8in 22 +... +a,_,8in {(n- Iz

We can obtain the values of the coefficients O\

7\
: SO Y S

\

so that this curve shall pass through the points of thelcugve

; . ?f:f(ﬂ?], m:\\
at which the abscissae are \
T 27{, RIS DN
wn n i

In this way we find a,, @y, ... a,_; as Juhetions of a. ProceediI.lg
to the limit as n—>oo, we have the\vilues of the coeflicients |
the infinite series * f&ﬁ?ﬁ;ﬁ??@g‘?ﬁ%w PR

But this passage from a ﬁn‘l;;é"number of equations to an infinite
number requires more codiplete examination before the results can
be accepted. ¢ 2\J

The most satisfg.c\te\ry method of discussing the possibility of
expressing an athjtrary function f(x), given in the interval (== ™)
by the correspbnding Fourier's Series, is to take the series

ag+ta, cos z +bysin w) +(a, 008 22 + by 08 2%) + .-
Wherqﬁﬁhe" constants have the values given in (2), and sum th_f‘»
tg];nis"'up to (&, cos nz +b, sin na) ; then to find the limit of this
o~s;}1m, if it has a limit, as -,

In this way we shall show that, when f(x) satisfies very genersl
conditions, the Fourier’s Series for f(x) converges to f{z) at every
point in (-, ), where f() is continuous; that it converges 0
3[f@+0)+f(x—0)] at every poiut of ordinary discontinwity
algo that it converges to L1[f(— 7 +0) 4-f( — 0)] af g= |, When
these limits exist,

Bince the series is periodic in » with period 27, when the sum
1s known in { - 7, %), it is also known for every value of .

_ *Lagrange, (Kuvres, 1 {Paris, 1367), 553: Byerly, Fourier's Series, ete. {1893), 30
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If ib is more convenient fo take the interval in which f(z) is
defined as (0, 27}, the values of the coefficients in the corresponding
expansion would be

l 2" Ls ¥
E—};Lﬂx)dﬁ»
1 2~rr . . ; 1 Do "o . ,
T,= FlaYeosnz"dz'y, by==1 flzVYsinna'dz’, n=1.
TJi T4

It need hardly be added that the funetion f(z) can have diﬁerent\
analytical expressions in different parts of the given interbal,
And in particular we can obtain any number of such expﬁnsmns
which will hold in the interval (0, =), since we can give'f(z) any
value we please, subject to the general GDIldlfleﬂS We ghall establish,
in the interval { -, 0). %)

The following discussion of the possibility of the expansion
of an arbitrary function in the corregponding Fourier's Series
depends upon 2 modified form of the ifitegrals by means of which
Dirichlet* gave the first rigorous pioof that, for a large class of
functions, the Kourier’s Senesw@w&tg%lﬁ%lfa[ﬁ} or}¥ifh the help
of the Second Theorem of WIe@Ii Value the sum of the series can
be deduced at once {rom-these integrals, which we shall call
Dirichlet’s Integrals. <~

7Q 91, Dirichlet’s n\mgra.ls (Fivst Form).
i it L
hm'[ f( Z di "_2f(+0)’ llmjf( ) - 2

]
where 0<(;\b
Whm{ we apply the Second Theorem of Mean Value to the

lntegta} .[0 Sln wd” O<b’&g

\’ &

¢ RN
\ ‘aesaethat I tin-—xfi _u-,-[ sinwdx+é,L S{n$d$,
b!

where b’ = £ ¢,
Thus [(522 010, (3 2)
I’y
4
<b;-

*Journal fur Maih., 4 {1829), 157, and Doves Repertorium der Physik, 1 (1837,
152,
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It follows that the integral

o
sin &
[Femsa

0 Y

'eH, vIo

is convergent. Its value has been found in § 88 10 be jm.*

o2 hows "
The integrals j T4 and j SIIE g
a

i &
can be transiormed, by putting gi==1", into

“t gin “h gin @ e Y
— d=, T da, A\
0 T it T « \J/
respectively. N
It follows that s,
: 0 N
[ .
N SN My sI1n & % } -
lim g s &% d:v:j — da = \\bla,
porm g F o * \
B oy b oy 9.\
. 51N ¥ . HIRL&Y
and lim j AL de— lim [ xS ==0, 0<la< b.
p—eon o g X RN :r;x

These results are special cases of the theorem that, when fla)

S(.‘Lt’.':sﬁ es certain CORd{#W-ﬂlﬁéé’ﬂiﬁ M}i?f,ol‘ .in
tim | oy ¥ e =T 1 10), 0<a,
i}

=0

b 74
umj FO L ge—0, 0<a<d,
L

et o €&

In the discussibn of this theovem we shall, first of all, assume
that f(z) satisliés the conditions we have imposed upon () in
our notatig)x(ibr the Second Theorem of Mean Value ; viz., it 18
to be bomuded and monotonic (and therefore integrable) in the

inter \Mlﬁh which we are concerned.

':"\I't"'is clear that St

- S satisfies the conditions imposed apon

‘{Ifr(:t:)_ in the theorem as proved in §50. 1,. Tt is bounded and

integrable, and does not change sign more than a finite number of

times in the interval.

We shall romove some of the restrictions placed upon f{x) later.

1. Consider the integral

J S
J‘f(a:)hll_gf"f de, O<a<b

*Bee also the footnote on p. 202,
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From the Second Theorem of Mean Value
j 7 )im 2 G = fla +0) J sinuz g +f(b~0) J ’*m;‘“’ dz,

where & is some definite value of sine=x=sb. .

Since f{x) is monotonic in ¢ = x = b, the limits f{e+0) and f(b - 0)
exist. )

And we have scen that. the limits of the integrals on the right-
hand arc zero when gy-»w ., N

It fullows that, under the conditions named above, ¢ \\

iy | 0)®

sin g,tx dx=0, when 0<ta<<h. .\

Ii. Consider the integral A\
S0 g 0<a
Jise )
Put flz)=le ~rf +0). The hmltjt\lr(}) exists, since f(x} is

monotonlc in 0= @< a,

Then ¢fx) is monOtOmG and Qﬁﬂ"hzotib_ Qulibrar y.org.in
Also

j:ﬂ”j _S_IE_'E?? dw =f +U’J. S_m;“’_x dx +L (x) sin ,Md 7.

As g0 the hrstomtcgml on the right-hand has the limit .
We shall now ‘1}10“\1‘)}&1} the second mtegral has the limit zero.

To prove thlﬂ % is suffcient to show that, to the arbitrary
positive numy l’Jel ¢, there corresponds a positive number » such that

Q07 [fom e
LG’G us hreak up the interval (9, @) into two parfs, (0 a) and
f )), where « is chosen so that
A% | pla—0)| < ef2m.
We can do this, since we are given that ¢{+0
there is a positive number a such that
{¢(x)] < /27, when 0<m*~a
Then, by the Second Theorem of Mean Value,

"“ (f)(x)sm P = p(a~0) -‘“‘Slnﬂaﬁdx,
fo

x

< ¢ When g iz

y=0, and thus

since ¢( +0) =0, & being some definite value of z in 0= =0
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But, in the curve
Y=—--, T 0,

the successive waves have the same breadth and diminishing
amplitude, and the area between 0 and = is greater than that
between 7 and 2+ in absolute value: that between » and 27 is
greater than that between 27 and 3+, and so on; «ince {sin | goes

i - N
throngh the same set of values in each ease, and 1/ diminishés
as z increases, O\
- Z8in @ sin O
Thus j T dr = j. S dx<ar, \/
o ¥ o &

whatever positive value « may have. la;

Igin 75 Pain 23X

Also j -_.-.-dw-I LV J ——J
0

and each of the integrals on the right- han,\ls positive and less
than r for 0<p<gq.

Therefore .[:m’w J;i' when 0 =Ip<
\-.rww.db]rr llm‘ﬁ‘%f Wh z

It follows that lr Gz} il&jrf da l<§’ xor
N re

<%e,
and this ig independ of “.
But we have seen% (I) that

I¢{m)81n#$dm 0, O<a<a.

”p.—-?w L]

Therefore, i'.eu the arbitrary positive number Le, there corresponds
a positivé-number » such that

w\;“\‘: ' ” Pl )sm ‘mdxl<§e, when u = 0.

Thrjw}smyxdw\ﬁl oz )smym ] “‘ He e ‘M’dm
evefore
‘I e )sm;w |< Ye+ Je

%)
<Ze, ‘When 7R
Thus lim ¢(x] §1:11_p_:{; de=0.

== a
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AN
i practically contained in the above,
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And, finally, under the conditions named above,

tim | 7)™ a=T f(10)

i

92. In the preceding section we have assumed that f(z) is
bounded and monotonic in the intervals (0, ¢) and (¢, b). We
ghall now show that these restrictions may be somewhat relazed.

L Dirichlet's Integrals still hold when f(z) 4s bounded, andthe
interval of infegration can be broken up into & finite number of ‘open

partial intervals, wn each of which f(x) is monotonic.® (\)
This follows at once from the fact that under thesé, ‘Sonditions
we may write f(x)=F (=) - G{a), (..}"

where F{r) and &{z) are positive, bounded, Qnd monotonic in-
creasing in the interval with which we age eohcerned [of. § 36. 1
§ 36, 21 \ )

"[‘}ns rexul, can be obtained, as follows, \Qhout the use of the theorems of
§36. L or § 356, 2.

Let the interval {0, ) be broken ap mf.o the 2 open intervals,

{0, a;), (“&W)dbl' a(ﬁﬁbl’ﬂ'}y org.in

in cach of which fix) s bounclod“and. monotonic.

Then, weiting 2,=0 and « ch, we have

[f( 2 g ST 2™
F=1-8p

The first inie n‘r{}K\u thls sum has the limit 2f {10}, and the others have
the limit zero when p—w0.

It follows th'Lt“ under the given conditions,

\~ lim | Sl Sm’w dr=p f(+0), 0<a.

peis 0

T%pmof that, nnder the zame conthtlons,

gin ; x sinp o

™3 lnmg Sz )bm’”rf{x 0, D<e<h

I

It will be seen that we have nsed the condition that the number of partial
intervals is finite, as we have relied upon the theorem that ihe limit of a sum
is equal to the sum of the limits.

IL The integrals still hold for cerlain cases where o finite mumber
of points of infinite discondinuity of flz} (a8 defined § 33) ocout
m the tnferval of integration.

*They also hold whon f{x) is of bounded ¥
it f(+) is of bounded variation, it can be repl
bounded and monotonic increasing funetions.

sriation {§ 36. 2) in the interval, since
aced by the difference of two pesitive,
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We shall suppose that, when arbitrarily small newhbourhoods of
these poinis of infinite discontinuity are excluded, the remainder of the
interval of integration can be broken wp info a finite number of open
partial intervals, in each of which f(z} is bow nded and nienotone,¥

Further, we shall assume that the wnfinite integral ‘f{:;:.) dr is

absolutely convergent in the interval of integration, and that w=0
is not a point of infinite discontinuity.
We may take first the case when an infinite dhumhnuz.tv\
} ‘~11L q¥

occurs at the upper limit & of the integral j Sy = (Lr" And
only there. PR
Sinee we are given that j‘ @) dz 18 absolutely ch\wrgent we

b
know that J- Sfl=z)
., . . x'\ ’

(@, b). And this convergence is uniform. € ¢
To the arbitrary positive number ¢ thézawcorresponds a positive

number 7, which we take less than (b4 .aY; such that
www. dbr u Lbrmy org.in

l:-m :u:|

SID 4% ;
;‘ de also CONVeTges, IQ SR 1}

HE rI-

|
|‘|L sf(x) Smx‘m dx: <§¢, when 0<t€ 29, cooeviinnnn (1)
and the same % serves for a,ll“values of .
B‘ﬂt ’; \
1 [f( Sm"‘wd:z:& f sm,uasd n f(y)‘ﬂ_n‘g dr. (@)
i|| o it -1 &
l And, by (I) a,ht\ve,
1. O b :
R nmj T B gy o,
% 1t follow \s that there is & positive number v such that
i N8 L By
SN |.I f(x}%fwl <}e, when v, aoooeeeenneeon(3)

\ __From {1), (2) and (3), we have at once
| [0 B ar <te v

] <e, When pE o
: Thus we have shown that, with the conditions described above,

i: 1imj i) sin ‘uxda;:o, O<za<b.
Ml

*'_l‘he integrals still hold when the function is of bounded variation in the re-
mainder of the interval of integration,
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A similar argament applies t6 the case when an infinite dis-
continnity occurs at the lower limit o of the integral, and ouly
there.

When there is an infinite discontinuity at @ and at b, and only
there, the result follows from these two, sinee

[y 2 o= 1) 22 4 [ ) 22205, 0ot

. x o 2 ¢ ©

When an infinite discontinuity occurs between ¢ and b éwe
proceed in the same way; and, as we have assumed thag the
namber of poiuts of infinite discontinuity is finite, we odn break
up the given interval into a definite number of partial intervals,
to which e can apply the results just obtained. ™)

Thus, under the conditions stated above in (I )‘,"\‘ '

7

lim [bf(:v) LT S} whev{ O <.
e B _ P\

Further, we have assumed that x:f& 16 not a point of infinite
discontinuity of f{z). Thus the inberval (0, a) ean be broken up
into two intervalg, (0, a) an&{q,@&ﬂ?hﬁf&f@%}&b?}}jﬂdw in (0, a),
and satisiies the conditions g?éah’ in (1) of this sec%ion in (0, a).

It follows that =~

~

lim [P Y de=TF (4 0)

M \
and we have jusﬁ@{;wn that
..’:’lim ["f(m)gr};u_:c dx=0,

WS peEn
Thevefoge under the conditions stated above in (11},
'S X . g sin jex T
- Yo A Je= - U403,
A Lim j RAC do=g f(+0)

»«7‘&93 Dirichlet’s Conditions. The results which we have obtained
3 $§§ 91, 92 can be conveniently expressed i fterms of what we
shall eall Dhrichlet’s Conditions.*

*Tf the functions of hounded variation of § 36, 2 are included in the class of

funetions availahle for diseussion, f{x) may bo gnid o satisfy I}1ri(I:_hlet’s Co.nd:.mns
{i) when it is of buonded variation in the whole interval; or (i) "{]“m it “‘; ;
finite number of points of infinite discontinuisy in the interval, _a-ml it 1]8 of ‘?011123 €

variation in the remaiuder of that ntereal, when the arbitratily Sfll&.l‘nel‘.gh uri
hoods of these points have heen excluded ; provided that the infinite integra

&
\af {z}dz he absolutely convergent.
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A function f{z) will be said to satisty Dirichlet’s Conditions* in
an interval (e, b), in which it is defined, when 1% 15 subject to one
of the two following conditions:

(i) f(z) 45 bounded in (a, V), and the wierval caw lie broken up
into @ finite number of open partial intereuls, 1 eoch o
which f{z) 18 monotenie;

(i) (&) has @ finite number of points of infinde disconiinuity
the intereal. When abitrarily small weighbouihoods  of
these points are excluded, f(x) is bounded n the remuindon
of the interval, and this can be broken wp o & )&mie
wumber of open partial intervals, in each of whioh f(z)

monotonic,  Further, the infinile inlegral Lg‘\&rjd:r 5 to
Ly
be absolutely convergent.
We may now say that: N

When flz) satisfies Divichlet's Oomﬁmrms’}n the intervals (0, @)

and (a, b) respectively, where 0<a<b, Qidf| +0) exists, then
ww . dhr auhbrar;y org.in

lin | fz )8‘“‘” do=7 f(+

Le——m il o

und lim [ Fad b 42 —o.
oo \ &

It follows from fhe\kn'\opertics of monotonic functions (cf. §34)
that except at the jponits, if any, where f(») becomes mﬁth or
oscillates mhmtely,“a function which satisfies Dirichlet’s Con-
ditiong, as deﬁQQd above, can only have ordinary discontinuities.}
But we haye 26t assumed 7 that the function f{z) shall have only
a finite 2 tber of ordinary discontinuitics. A bounded function
whichg 1s Tonotonic in an open interval can have an infinite number
of m‘dmfu:y diseontinuities in that interval [ef. § 341
TN Perhaps it should be added that the conditions which Dirichiet

=Bt see footuede on p. 225

1The eonditions in the text oan be further cxtended ro as to include a finite nurber
of points of escitlatory discontinmity in the neighbourhood of which the func tion is
bounded {eq. sin 1){z —c} at x=c], or of eontiunity, with au infinite number of
maxima and minima in their neighibouwrhood [e.g. {x — ) sin 1){x ~c} at 2 =cl

_ This mencralization womld also apply 1o the sections in which Idrichlet’s Con-
o clitioms are employed,

iAhe same remark applies to the case when f(z} in a function of bounded
variation.
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-l

himgelf imposed upon the function f(z) in a given interval (a, b)
were 1ot 50 general as those to which we have given the name
Dirichlet's Conditions. He contemplated at first only bounded
funetions, coutinnous, except at a finite number of ordinary dis-
continuities, and with only a finite number of maxima and minima.
Later he extended his results to the case in which there are a finite
number of pomt‘s of infinite discontinuity in the interval, prowded

that the infinite integral J‘ Jfluw)de is absolutely convergent. o

A
AN
7L 94. Dirichlet’s Integrals (Second Form}. A
. ‘. ‘-]]J_ i . b SID, g ~
,\]Iuﬂj.n; )Snm dx _'zf(+0 i}gjaf{x)xk—dm_o,

where 0<a-Zh=Za.

in the discussion of Fourier’s Series thes Iﬁégrals which we shall
meet are slightly different from ])mchlgt’b Integrals, the properties
of which we have just established. ()"

The second type of integral—astde ﬂvﬁaiﬁltbﬁaweo?@llpﬂl Dirichlet
himself wsed in his classical trqa'fament of Fourier’s Series—is

%m ,u:r; sin ,uo:
J @) gy d’ .[ @ &

where Da-<h<m "..

We shall now prkc that :

When f(x) ‘atrafes Dirichlet's Conditions (as defined in §93)
w the suter »a?s 0, a) end (a, b ) respectively, where 0<Ca<b<lm,
and f{ + W\éxists, then

O oy S g T 0
Y
hnd limf )-am,uxdx 0.
\ o= uf( 8N

_Let us suppose that f{x) satisfics the first* of the two conditions
given in § 93 as Dirichlet’s Conditions :

f{2) is bounded, and the intervals (0, ) and (2, b} can be broken
up into a finite number of open partial intervals, in each of which
f{#} is monotonic.

*Or, alternatively, that f{z) is of bounded variation in the intervals (0, o) and

{a, By,
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Then, by §36. 1 or § 36. 2 we can write
Siz)=F(z) ~ G2},

where F(z), §(x) are positive, bounded and monotonie increasing
in the interval with which we arc concerned,

[en. v

BN & sin ol £

But afsin z is bounded, positive and monotonic increasing’id \
(0, @) or {a, b}, when 0<a<b<<zX

% ¢ '} sin e
Thus  f() SRE [ (2) . ~G(@) &
sin &
N
(NN

7 A\ N
Therefore F(a:) and G{m) 7 5 e both bmmded ‘positive

and monotonic increasing in the interval (0, a) ol (rz b) as the
case may be, provided that 0<<a<<b<w.
It follows from § 91 that RN

“'I‘Lf( SR gy +0x—a(+0

b gin & 2

W dbrauflﬁ&ﬂ?‘(g)g in

and 1imI fx ﬁm—’“fd 30, when O<a<h<r.

i

Next, let flx) satlsfy the second T of the conditions given in § 93,
and let f{ +0) exist

We can prove, 1ub}as in § 92, TI, that

hmf f(os)“m”xdm 0, when 0<a<b<.
N& (19

For ,@'are given that _[ f{#)dx is absclutely convergent, and
\@re\'kﬁow that #/sin « is bounded and integra.ble in (a, B).
: A\ Tt follows that j Filxy smx dz

is absolutely convergent; and the preceding proof [§ 92, I1] applies
to the neighbourhood of the point, or points, of infinite diseon-

tinuity, when we write f(z) sﬁ.{; in place of f{x).

* We assign to z/sin « the valoe 1 at =0,

t Or, alternatively, that f{z) is of bounded variation in the remainder of the

interval, when the arbitrarily small neighbourhoods of the points of infinite dis-
continuity are exeluded.
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Also, for the case  lim J'“f(x} haasd il
1] ! 1

e
we mecd only, as before, break up the interval (0, a) into {0, a)
and (g, @), where f{z) is bounded in (0, ¢) and from the results
we have already obtained in this section the limit is found as
stated.

Tf it is desired to oblain the second forin of Iirichlet’s Integrals for the eages
stated below without the use of the theorems of § 36. 1 or §36. 2 the reades® N
may procecd as fellows : s\.
¢\

(i} Lot f{a) be posilive, hounded and monotonic increasing in {0 ‘@) ard
{a, B). Mt

i 1
P

U S 1so, and ${x) =/ (2} — — is 50 also. /5
Then Cir D 18 50 also, h{ay =f1( }sinm 4
Bug, by § 0L

.mz\i.
i _1I + 4 0},
Mh?.lo\u(f x)— 2¢( UJV(‘F }

Therefore \ N

sin Ju:c
fim | ) i"'o)
i lln aln w% dbraulibrary.org.in

2in r( .!.’n.,"

Alzo

*
siTr 13

; ST e -
Slll &£

v, L sin u.?:
1 (=)

Ja sz

Therefore hm\* Sz

sin ez
sinzx

—\ @ s

sin pe
sin

de=10.

(i} Let f{«) be pr331t>é bounded and monotonic decreasing.

Then foff s,cn‘ne value of ¢ the funetion ¢—f(2) ig positive, bounded
\
and monowmc increasing.

Al\q

N ca L singee 4 sia ;w sin 2 5

’s'\ || [e~flo)] 2o da=¢ _\0 \ S e

Q’ Using (i), the result follows.

'"\ itive all the
\ (111} If f{x} is bounded and monotonic increasing, but not positive al

tima, by sdding a constant we can make it positive, and proceed as

in (ii); and a similar remark applies to thé case of the monotonic

decreasing function.

(iv) When f{z) is hounded and the interval can be broken up nto o fnﬂiet
number of open partial intervals in which it is monotonie, the resu
follows from (i)-(iii).

(v) And if f(} has a finite number of points of infinite dlscont-mmty,_ 12
stated in the sccond of Dirichlet’s Conditions, so far a8 these poin
ate concerned the proof js similar to that given above:
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\A Proof of the Convergence of Fourier's Series. In the opening

sections of this chapter we have given the usual elementary, but
quite incomplete, argument, by means of which the coeflicients in
the expansion

Fl@y =0y +{a, cos & +by sin &) +(ay cos Lic -y sin 22) +..

are obtained.

Q"
We now return to this question, which we upproach i qmte
a different way.

O\
We take the Fourier's Series O
Gy + (¢ €08 T +By 8in 2) +(a, cos 2w by sin 2r)dEn,
1 L 2 '\’
where a,= 5 Jflz'ydx' and, when » = 1, NS
b >

aﬂ:.lr fla'y cos nax’ daf, b,= [ )b(" sin na’ die'.
TS~

We find the sum of the terms of thl‘: series 1p to cos nT and

sin nx, and we then ex; mine wh thot th!a sup has s hmit s
www rau lbrau porg.in
00,

We shall prove that, %henﬂm is given in the tntereal { =7, ),
and satisfies Durichlet’s C‘madtiaons in that tnterval,® this sum has @
limit a8 n—>o. It esmeg_:ml to flz) at any poinl in —w<TIT
where f(x) is contmu\%{s and o

S LA +0) +f (= - 0)],
when there 8\dn ordinary discontinuity at the point; and

Hf(-= K@}%f{w O] at o=+, when the Lmds f(v—0) and
fi- -.r-iQ) exist,
Lct‘.

~ ;\ $(%) = ay + (@1 c0s & +b sin &) +... +{a, cos 1T +b, sin 7L,
N vhere g, @3, by, ete., have the values given above.
Then we find, mthout diffieulty, that

s”(x}tﬁ']}}_r_ Fl' 142 cos (@ —2) +... +2 coz n{a’ — )] dz’
:__1_]' f(' )sm 32n +1)(m —x) P

— sin §(z' -

* In this and later scotions, wlen refersnee is made to Dirichlet’s Conditions, it will
bo understood that these can be modified, it desired, by the introduction of the
funetions of bounded variation as explained in tho footnote on p. 225.
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_ 1“; f(ﬁ)smg(2n+1)(m — ) i’

27l sin ${x’ — )
R P Lo P
Thus » o
sﬂ(a‘-):%J‘O f( -9 )sm Sl?;.; \
b .
+i0 Fl+2a )sm(jrr;:l) da, ......_:_\_,,(1)

on changing the variable by the substitutions &' - 2= +2a5

1f —w=<x-Z7 and f(z) satisfies Dirichlet's 00nd1t1@113 in the
interval (-, w), f(xF2a) considered as functlons off & in the
ntegrals of (1) qahqu Dirichlet’s Cond!tlon%«m “the intervals
(0, 3+ +%2) and (0, §=— 1x) respectively, andhthese functions of
a have limits as a—0, provided that at the'point » with which we
are concerned f{z +0) and f(z —0) exist,{ ¥

It follows from § 94 that, when #\Jies between — 7 ahd 7 and
fte =0y and flz +0) both exmiv'{nww'dl;;auhbl rary.ot

.li_m EMEIES 1—{ f(m 0) + f(w +0 T
B[ f(z-0)+/(@+0)],

giving the value fla)( a,t\a point where f(m) 13 continuous.

We have yet to\s}amme the cases x=

In finding tHesum of the series for x=u, we mus} insert this
value for 2z %, (z) before proceeding to the limit.

D sin (2#&-!—1)0:
T sfm)= L] flr—20)™
N )

sin

Sipd’é the second integral in (1) is zero.
o~ \Tt follows that

) I sin (2n +1)a
N Sn('ﬂ‘):;L flr—2a )_h—sfﬂ—' da
1( sin (2 +1)a
+. '.L $f(1r -2} dina do
1 (2n+la

" sin
::"L S =205

Tt
gin (2 +1)a dut

11¢
+7.- J'ﬂf( -7 +2a) sine

where £ is any number between 0 and =
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We can apply the theorem of §94 to these integrals, if f(x)
satisfies Dirichlet’s Conditions in (~ =, w), and ihe lmits f{r -0},
F(— o +0) exist.

Thus we have lim s, (m)=3[f(- = +0) 1 /(= - 0].

J A

A similar discussion gives the same value for the sum ab 2= -
which is otherwise obvious since the series hag a period 27

Thus we have shown that when the arbitrary fronction f(4) sa-t-iaﬁcs !
Dirichlel’s Conditions tn the inferval (-, =), twnd

Ty

<O
aﬂzg—]%-r“‘ . F(@)dz' and, when »i= 1, \ 4\
1 v 4 + ’ 1 ;’ R l’
aﬂ:;IP Fla"y cos na' d’, bn::; _Tf(x sl Q\r’l > |

the Fourier's Series

ay +(a, cos x4+ by sing) H{a,cos 2z j;{r»}sin 2+

converges to t\ e

(2 +0) +f (=]

at every point in —qrm@bmmmgﬁwqbﬁg tmd f(x—0) exist; and
at = 47 it converges 1o

1[f{*1r~50}+f(7r 0,
when f(— = +0) and f(= —O‘) exrst.*

There is, of course, nog éon why the arbitrary function should be defined
by the zame anatytical E}})resswn in all the interval |of. Ex. 2 below].

Also it should he Hotived that if we first sum the series, and then let
approach a pointdeldedinary discontinuity =, we would ohtain f{x,+0} or
Jlzs— 0, according to the side from which we approach the point. On the
other hand, 1Nve ingert tha value x, in the terms of the series and then sunl
the aenc:.,& obtain [ fay +0) 4+ flag— 045

We Jiave aleeady pointed out more than once thab when we speak of the
s the series for any value of =, it is understood that we first insert this
“alue of « in the terms of the series, then find the sum of » terms, and finally

b?n the limit of this sum.
\\(-' . 1. T . .
A

Tind a series of sines and cosines of multiples of » which will 1'epres.e-nﬁ

L _
T in the interval — 7 <2<

* 11 tho reader refers to § 101, he will see that, if f{«) is defined outside the interval
{ =, ) by the equatiunf T+ 2w} =f{x), we can replace {1} by
smlz) = \ (P s;n(27a+1)u ] k [ }si11{2n+l)ada.
sina
In this form we can apply the resmlt of § 94 at once to every point in the closed
interval { ~, =), except points of influite discontinnity.
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What is the sum of 1he series for z— - .
— 1 (v
Here  f(): 2th- # and a, TBdng | Cewnrds, w1,

Integrating by parts,

{1 4’»‘»\2)l 7 cosmzdz = (g™ - o7 cosmr.

Therefors _{-ne
=y +ul
Also we find =3
P 1 T . A
Similarly, !),‘:Q—Sm—h?‘_-_\we“’ sin neda AN
)
—.M_N.'__ — 1yn=1 L ™
i :'“1!,2( ]} h (":}'
Therefore AN
\.
e L1 Lo
Zsinha” “8T N IO IR
- 1 4 : )
L cos 2y AL 2
+[\]+22 cos :z<1’+2gsm Foiey
when — = oo o \S .
When = ., the sum of the series is LPcoth =, since
S — =+ 0y ¥ipaaytap iirary org.in
TTHTE Tryangs 4|;;_ B FIRTHIE]
R e
=l R R
g FrL 5 e I R
:JIE j‘l_ = h_ldj = ‘:-I‘ i i 4 HE
i :‘N:,+__',_FIE 14 ¥ __L- .tq
i I i 3
eI o
) '\;]_E-jﬁf—¢ k‘::‘: i_ al J_I _:h_ o) J..J_ R _%:':;" Hi ‘_'," .
OV e e e
O s
- AR T AR E ' T
.'\’\ _"l H AT T HHE L‘”‘J{- H
N\ S2iiey I ' IE R
N {3 i g i !
" \ ¥ % T t FH) HIY L
\‘: EHE Tl A
in ¥ig. 16, the curves
kB
=g g%
Zeinh o *
1 1' N 1 ap 4 9 3
y-—:}-q—( =T s ;r)+(---)+ TR R sin 3z

are drawn for the interval (— y T

It will be noticed that the cxpansion we have obtained converges very
slowly, and that more ferms would have to be taken to bring the approxima-
tion curves (17 =3,(2}1 near the curve of the given function in ~r <z <7

233
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Af x= +7, the sum of the scries ig discontintions. The belaviour of the

approxzimation carves ab a poiné of discontinuity of the sum is examined in
Chapter IX.

"2, Find a series of sines and cosines of multiples of & which will repre-
gent. f{z} in the interval - <Cx <, when

flay=0, —=m<xiid) /
‘f(szifx, 0{;L<?T_J

1r =2
=_-\ Yrzde="_,
Here Ty Wﬁo 3 16 N .
1 \'ﬂ' i 1 ( 1 ¢\
= Y cos e de = aos nm -+ 17, 7 .
n 7o ir 4nt 's,}
I{~ . s AN
==\ izzsinwardr~ - cosnr. N\
b -rr'_\.J i in ~.\ ¢

Therefore

f(x)—-lﬁ I—'2—[ cosa,+2 sin LJ——S sin ..;,1—\

when —7 < &<, \
When = +r the sum of the series is §=% and wejg obtain the well-known
result, &
- ~1 o+ 1 1 4. \

7 75
&2{3 Find a serics qf,wﬂam{&gm;@wyfgnglmles of @ which will repre-

nt -+ 2% in the interval — 7w <ax <. ".~.

Here @y = o K" (x + 3:2}(E1: r w2 LT
T o) EN

By = f_k ~(3H-:!”} cas 1z di = \ x? coa nx dx,

"o

and, after integration by ﬁs@tq we find that

a ‘7 3

N \,} 2 COS AT

3 ]. [ [
Also, :’\"'\5,1:_]-_\ {x + 2% sin na dx :%\ x gin nx de,
,"\1. i v
. $J 9
R —(—1yp12
which redu%s‘ﬁo b, =(~1y -
The;ﬁic‘)re

o~ \' ::+m2— 3 +4(—cns x+%sinz)-{~4(g§ cos 29:"isin 2m)+.u ,
BN — % <@ < T,

When = 47 the sum of the series is %2, and we obfain the well-known
result that 1

a i
'G'_1+'22+§,9+“’ .

96, The Cosine Series. Let f(2) be given in the interval (0, 7}
:Emtl satisfy Dirichlet’s Conditions in that interval. Define f{2)

In -5 =z<0 by the equation f(- #)=f{x). The function thus

defined for (~r, ) satisfies Dirichlet’s Conditions in this interval,
and we can apply to it the results of § 95,
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But it is clear that in this case

%J.iff(w')dm' leads to f.',]_-l—J. fz")da,

@, —lj J{&") cos nz'de’ Icads to a, :—j J{z") cos nx'dx
T —r Tl g
and  &,= :r flz') sin na’ dz’ leads to b, =0,

ay=

Thus the sine terms disappear from the Fourier's Serics fordiis
function.

Also, from the way In which f{z} was defined i n = .g\a:<0,
I
and FLA(— 7 +0) £ (x — 0)]=f = 0) o

provided the limits ( +0) and f(= — 0) exist ,"‘..\\'

In this case the sum of the series for 20 is f( +0), and for
z=mitis f(z~0), : N

It follows that, when f(x) ds L ‘&rbztmrg Junction satisfying
Dirichler’s Conditions® in the mteri‘al (0, 7), the sum of the Cosine
Series www dbrauhbrary org.in

[j{x)da: o S‘“cos mj £z} cos na’ dx’

s equal to ,E[f(x +0) +f(x-0j]
at every povht E;ezwee} 0 and = where f{z+0) and flz—0) exist;
and, when f{ —rO)\}nd Flo —0) exist, the swm s f(+0) at ©=0 and
Hr~0) at s24m

Thus, wien f(z) Is continuous and satisfies Dirichlet’s Con-
ditions xm fhe interval (0, #), the Cosine Series represents it in

thm\"\@sed interval,
ﬁx 1. TFind a series of cosines of multiples of # which will represent « in
¢ \’p’he interval {0, =), . /
\ 3} ) Here ‘ xdxd__z,r’
| 2
and ay :f\ U:.l.: cos ?wdx:_a*.;r (cos nr —1).

Thercfora x:g_4[cosx4 1(0533:-!— ] 0w
1.-

32
Bince the sum of the serios is zero at x =0, we have again
1.1
= +pate
8 1 +‘33

*3ee footnote, p. 230,
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In Fig. 17, the lines Y=, |
Y= -x, —7 - [ ] 'I'

angd the approximation curve
__"T 4 L3 ! T g, i i -‘\n — T e
y=g - (CoSTE g cog dz 4 Gecosdal,  —wE =,

wiww.dbrayli Li bx;at"y’.or gin

It will be secn how closely this &ﬁpmmmthn curve approaches the lines
¥ = 2z in the whole interval.

Since the Fourier’s Series has,\@ period 27, this serics for unrestricted values

-] I,

h
\ 4 , Fiz. 18,

of x represents the ordinates of the lines shown in Tig. 18, the part from the
interval ( ~w, x} heing ropeated indefinitely in both directions.
Q) The sum is continuous for all values of =,

fl ~EX. 2. Find a series of cosines of multiples of & which will represent f(l’)
in the intervel (0, =), where

f(x _4,-',"" B Jangy ¥ BT,
floy=txir -2, %ﬂ..qi.;-_ﬂ_’ }

1 [in 1r
Here a‘,:;r-_‘o ,}—wxd:r—]—fh;;:rr(:r—x)d:t::-]%q.—a__
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d i -—gi“‘vxco@ 4 2{m, cos ne dx
Ehal Y nE x—;—_‘;‘\h—fr(w—m) 0B
'Eﬂ - N
,—_él :z:cosnxdu:q-%r {7 —x) cosnx dx,
AL Jiw
which gives @, = —--_—1— [l +cosnr—2 cos%nﬂ:g—cos?—bfsinaﬁ-
n Dnt 02 2 4
Thus r, vanishes when # is odd or a multiple of 4.
2
Also f{:r):fr-—Q ll:n.<-.12..'~:~§-—]'- 0036$+‘.,:|, D=a=w.
16 22 62 y
N\
RS O
| .E. L = -r-_. 2N\ ‘
e e i HHRH (1)
P R et
T i HHHH £
s

R '.
RS eiSiECE SRl
L R R R ety
o\.‘," Fia, 19.
In Fig. 19, the lind."y =1, 0=e=3m,
4. 1, £ Y
O y=lrlr-2), ISeEm |
and the approwimation curvea
e \ y=yp72— } oos 2z, } 0=r=n,
NS y==J. 7%~} cos 2z — {y cos by,
are dr\«;n.

It will be noticed that the approximation curve, corresponding to the

1
- - ;_‘Irr - -r o 1’2— ¥
2 F1a, 20, _ .
terma up to and including cos Bz, a,pprogchels{(tjhe igiven lines closely, excep
&t th i hrough the interval (U, ). X .
Fc: iiiiitif;:ir ,vr;ﬁ?:s tof ® fhe series Tepresents the or’d mateff Olf tl;nB ‘331:31:}?
shown in Fig. 20, the part from —m to 7 being repeated indefinitely
directions.
The sutu i continuous for all values of &
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=4,

S —jm draw i

fir)

®

~Bx, 3. Find a series of cosines of multiples of = which will represent f{z)

in the interval {§, =), where

in

=

1T

=
fﬂl
s
T

e
’ 4
I
ipm r ) T T Tl oer —TTHH .ﬂm
T M i fiiees uL_
i HREE Y AD b HEHE :
e 35t i :
e : wﬁ : e HH:
: T i st
_ i S ﬁuwf i
: = i R T b T
e [ i
b e i B
T e i
; S i =
S HaEonn [ 2
H e H il : F A i
_ w T i
- - § : e =1t
o : O i
Am 4% H Ry ﬂ
4]

£33
EHT
FH=H

in inw.

s8Im

1
%

coa ux dx

.‘ ::r

Sl cognxde

—
=,

=
|
&
poid
by
+
=
o+
i
e
i

"]5

- C08 B — .
ies

&, the sum of the Fourlers Ser

1
5

A —[eosx - cos Jx

Jix)

Thug
gince, when x
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Trom the values st x==0 and z=1, we have the well-known resalt,
s
4:1-—;‘\;—}—\_1;—... .
In Fig. 21, the graph of the given function, and the appreximation curves
¥==}w-cosx,
y=3}7—cosz+] cos 3u, 0= =i,
y=—3%w —cos x4} cos Bx — } vos bz,
are drawrl.

The poinis =G and & = are points of continuity in the sum of the series':\
the point @ =}w is a point of discontinuity.

The behavionr of the approximation curves at a poind of dlscontmu\ty,
when 7 i3 lerge, will bo treated fully in Chapter JX. Tt will be suﬂiment to
say now that it is proved in § 117 that just before z=%= the a.pp;o:umation
curve for a large value of n will have a minimum at a depth n&arly 014 below
=01 that it will then ascend atb o steep gradient, paasmg near the point
{37, &7, and rising io a raaximum just after r={maia height nearly 014
above {7 RS

Ao

4 Ex 4. Find a series of cosines of multlplesq & which will represent f{)
/AT It the iuterval {0, &), where
f{xl:;;'ff, 0 -«31< %ﬂ'r

F(x)=0, @b@"ilﬂ.ﬁ ary. org}n’
Jlxy=— -r, :5?" < T W,
Also Jlimy= 31?37 v SlEmy= -l
1 - 1 =
Here =7 ( {d% (h dx =0,
T
and at,\x\; ﬁ cos nedE —§ _[h cosne da
v, :—2— [sm Anm +gin fnr]
O 4 ] ,
9.\ = g, sin dna cos o,
7 \&
Thus ‘o,;vdnishes when » is even or a multiple of 3.
Andefi {a,}~ ; ?Lcnsx— 1 oos 57 4 L oos T — cos Lo+, 0= aZw

.\ ”'i"ﬂe points «=0 and @=n are points of continuity in the sum of the series.
\ Fhe points m==1r and &=7Fr are points of discontinuity.
Yig. 22 contains the graph of the given function, and the approximation
curves

y-——zg-gcosx,

y= 2%_3 [oos x — % cos Hz],
9
= —‘,”rg [eos « — } eos fw + } con Tz,

x/3

fcosx—LeosBr 43 - gos T — {4 cos 11x],
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.-~ Bz, B, ' Find a series of cosines of multiples of z Whl(,]l will reprezent
log {2 sin x)* in the mtf,rva,l {0, )

Here g = - \ log (2 sin }x)dz

=log 2+~ \ log sin x dw
0 by hx 4 p- 131,
And ‘ coa nx log (2 sin k) de e
-4
=

wc

\'" cos 2z log (2 sin ) d A
o ¢\
1 , by Ex. 5, p. 13L, O
Thuz log (2 sin jx)= - [Low, x+YecosBxtteosdre..], when 0k r=n.
It follows from this—or may be obtained 1ndependent.1jr-that
log (2 cos dx)=[cos x —} cos 2z +} cos 3~ ...], When 0=z <.
These expansions have been obtained otherwise i ,{1 Vi, 1, [See footnote

on p. 159.]

97. The Sine Series. Again let f(m‘).’ne given in the interval
{0, 7}, and satlsfv Dirichlet’s Cmeji‘l r.lgm that interval, Define
flz) in— %= 2 <0 by the cquatron _}é?l 7= ib TF B e function
thus defined for (-, w) sa’[usfies Dirichlet’s Conditions in this
interval, and we can apply £0' it the results of § 95.

But it 1s clear that l{n\thls case

5“2% [ Mﬁ‘ nz’ dx’ leads to b, = L F{z") sin ne’ 7,

[LA

and that e, _0 '\vﬁen =0,

Thus the “03‘1\1153 terms disappear from this Fourler s Serles.

Sinee a}‘Lt}lc terms of the series

O By sin @ -+ by sin 22 1.

VQI&}Sh when =0 and z =, the sum of the series iy zero at these
gmnts

"1t follows that, when flz) is an arbitrary fumzwn satisfying
Divichle's Conditionst in the intereal (0, w), the sum of the Sine
Series,

23)}1 m};J. yits &'} sin nz dﬂ’r s
Ao +0) 40

=4|Lo

is equal In

*This funetion is infivite at =0, but it satisfies Dirichlet’s Conditions.
18ee footnote, . 230,
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at every point befween O and = where flz +0) and flz—0) evist,
and, when ©=0 and x=7, the sum 18 zero.

It will be noticed that, when f{z) is continnous at the end-points
¢=0 and 2=, the Cosine Series gives the value of the function
at these points. The Sine Series only gives the vulue of f(z) at
these points if f(x) is zero there.

Ex. 1. Find a series of sines of multiples of & which will 1epresent a in the.\
interval 022w,

. . 9 2N
Here rsinnx de={ -1y . \
%
N
"Therefore xe=2lsing - Fsin2z 4+ 1sinde -], 00wl
At r = the sum is discontinuous, D

In Y¥ig. 23, the line

amdt the approximation curve.

LY * [ . . . .
ft=2[sinz — $sin 2z 4 L sin 3z - Lsinda + | sin 5y,
are dravwm.
r . - x -
The eonvergence of the series is so slow that this curve does not Fxppl‘o"l'c}l
y=v beiween — 7 and = nearly as closely as the corresponding approximation

T e
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curve in the cosine series approached y=4x. If a is taken large enough,
the curve y = s,0) will be a-wavy eurve oscillating sbout the ine y== from
-7 to +, but we would he wrong if we were to say that it descends at a steep
gradient from 2= - 7 to the end of ¥ =, and again descends from the other
end of y—w to 2 == ab & steep gradient. As a matter of fact the snmmst of
the first wave is some distance below y=x at 2= —r, and the summit of the
last wave a corresponding distance above y=2 at o= when # is large,
Ty this uestion we return in Chapter 1X,

vie 24, )"
wy{g.dbraulibrary\org,jn

Since the Fourfer's Series hay a peﬁ\jd‘%r, this series for unrestricted values
of 2 reprezents the ordinates of tll:e; Ynes shown in Fig. 24, the part from the
open juterval { =, =) being ;e]’}b}ﬁed indefinitely in both directions. The
peintz ==, =3, ... are ]la“{i’t(s of discontinuity. At these the sum is zero.

® Ex. 2. Find a serids i{%‘s_‘}mes of nmitiples of z which will represent f{x) in
o the Interval 0 =g ‘r.L,\'h(:re

o\ tx} = dwr, 0=r=inr
.‘>; fimy=lw(r -2, v xS
ON 2w 2w .
Here \;\ B,==) dwwesinnedz+= \i 1n{w -z} sin nz dx
3 R AT
W S . .
\ =} wsinnx (Zx—|-§\% {or = ) sin ne de,
TN N Jin

> 1 . me
ﬂ'\‘é@h gives b” ‘—?:2' 1841 ?-

Thus Jiey=sin -

! L =
- g s 3x+§2 sin Br — ., 025 & S
Fig. 25 contains the lines y=24wz, 0=z}, )
y=in(r-z), Ir=oEm,
and the a pproximation curves

y—sin x,

y:sinx—3l.33h1.3x, 0=g=m.
. 1, 1.

y=sinx— 5 sin 3x +§ gin bz,
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¥t will be noticed that the last of these curves approaches the given lines
closely, except at, the sharp corner, right through the interval.

ki
T A R e ; [Ei
B HE P TR T
b ranba
Iy S0 iR
2t 3T i
.
hl il T
HH — T FHETE
F e e S H T A\
HFEEF R T T i 2 )
"N\
K \.
ST ; o RIS
R A T T 2 IO FHH %4
T T T 1 '
T T —
EEE N
T o [ LT T ] - - S
HHHE H-= : T AN
TR e
@) iR ST SRR
= : T .
S 2 E
- ] 1 ‘I -
=40 EIIEERINC] i ;
T e P P e :
LS i .
s it 5
TSN . |
i
B 1 B -
- =
: :
P e e T
SR [ ot Ee (T e A
~\ } F¥1g, 23,

For unrestrlcted\values of = the series reprosents the ordinates of the lines
shown in ¥j Qﬁ the part from ~ 7 to ++ being repeated indefinitely in both
_ directions, ¢ 0\

The ﬂum:s continuouz for all values of .
/\
I
1 . :

@ Y14, %5,
Ex. 3. F¥ind a series of sines of multiples of = which will represent f{%)
in the interval (0, w), where
Fix) =0, 0= dor,
Jiiw)=}r,
Slzy=1ar, Ir<a<r,

Sf(z)=0.

L

‘311- 2%

talg
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Here b, = ‘: sin ne dx

1 (cos war
= 5 " COS T

2 in Snm . nw
=—=sin — - §in —,
n 4 4

Therefore b, vanishes when 2 is'a multiple of 4.
N

And flx)=sinz-sin Zr+lsin3r+isinfr-lsinbr+.., 0Szx=r

Fig, 27 containg the graph of the given function, and the appm;i\rﬁ&t’ion
curves . e\
y=sin z, s ¥
y=sin € —sin 2z, O
Dr=a.

y=sin z —sin Zx + § sin 3z, '.mgvx
y=sin x —sin 2x+} sin 37+ sin RNV
The points x =%z and r = are points of diszaqz}tﬁmit-y in the sum of the
series, The behaviour of the approxima.tior.l.é\uiwes for large values of n at
these points will be cxamined in Chapter TX, )

_ @ Bx. 4. Find a series of sines of mﬂﬁﬂéaﬁlﬁlbﬁ}w@ withmapresent f{z) in
~" the interval (0, ), where .v.:‘;"’
Flxi=1m, 0 c;:?z:.’:;c’“}-_n*, )
Flz)=0, j;:\'rcic;in,
f@)= -\ <a <. J

Ao A =AFAE0; fm)=)w; fim)= =

Her N = ’\‘h i ;-;.::da:—ﬂh.’r sin nx dx

¢ PN\Y; "_ﬁ_’ an gw

2o 2 .
N\Yv = -[1 —cos }xr — cos Faw + 08 B}

N\ 3 '

Q
“‘\ 2= 8 coszn—rSlﬂsﬁE
N\ 3 2 6

"\; w/Therefore a,, vanishes when # is odd or a multiple of 6.
And  flz)=sin 224} sin 4z +1sin8z+sn 10z 4., 0ZE=m
The points x=0, 2=}, z=47 and x=7 are points of diseontinuity in the

sum of the series. imati
Fig. 28 containg the graph of the given function, aud the approximation

v
curveg
y=sin 2z, l
y=7sin 2x+ ! pin 4x, 0ZzZm
¥=sin 2z +} sin 4w+ sin 8z, l

y=sin 22 +1 sin 4z + | sin 8z +} sin 102,
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. Other Forms of Pourier's Series.* When the arbitrary
~function is given in the interval ( —{, I}, we can change this interval
to (-, =) by the substitution #==z/l.
In this way we may deduce the following expansions from those
already obtained :

lr f($'}d$'+12r f(m')cos@(:v’—x)dx', 1=zl .01} »
21 —I l TJ—1 i

l

i ~,".
tz,smmr J.Df( § Sil’ln—;ﬁ" de!, 0=Ze=l ... ,,f...'.‘; ..... (3)

When f(#) satisfies Dirichlet’s Conditions in {57, } the sum of
the series (1) is equal to I f{z+0)+f(x —0}] b every point in
— <<l where f{z +0) and f(z ~0) exist ; aGd*at x= -1 its sum
is 1 f(~14+0) +£(1 - 0)], when the limits f{&+0) and f{l - 0) exist.

When f{x) satisfles Dirichlet’s Condifjors in (0, I}, the sum of
the series (2) is cqual, 4o, d/mmOMREE )] b overy poins in
0<<@<} where f(z+0) and f(z O exist; and at z=0 its sum
is f{+0), at w=1 its sum is f{{ <0} when these limits exist.

When f(x) satisfies Diriglet’s Conditions in (0, ) the sum of
the series (3) is equal te™3f f{z -+0) +f{z—0}] at every poinb in
O<<w<l where f{x +0)\3\}1df(£ 0) exist; and at =0 and z=11ts
sum is zero,

It is sometzme.s\more convenient to take the interval in which
the arbitrary; ’&inbtion is given as (0, 27). We may deduce the

corresponcgng series for this interval from t]ld‘b already found
fOI‘( T)}F

qu\asgder the Fourier’s Series
~N\G ]
U %I (") do’ + - Z_‘j z') cos ni{x — 2) dz’,

where F(z) satisfies Dirichlet’s Conditions in (—, 7)
Let u=m+2, w=x4+2" and flu)=F(u-x).
Then we obtain the series for J{u),

_[ Jydu += ZJ. F{w) cos niu’ — ) du’,
for the interval {0, 27).

_—

1 - 1
1'|._}"($')d:c"+g§: cosn—;rxJ‘f(x')cosn—Ta;’dx’, Do f%)\
1 0

* 8ee fogtuote, p. 230.
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On changing u into x, we have the series for (),

o e

(%, 3., 1 s , , .
Q—TLJ(w}dx +-ﬂ_v§1:_|.0f(x)cosn(:c —oyde’, 0Zae=2r. ....(4)

The sum of the series (4) is §[ f{z +0) +f{z - 0)] at every point
between 0 and 2% where f{x +0) and f(5—0) exist; and at z=0
and z =27 its swm Is

$LA(+0) +f 2x - 0)],
when these limits exist.

In (4], it is assumed that f{z) satisfies Dirichlet’s COndltIO.ﬁ‘B in
the interval (0, 27). O

This reduces to a Cosine Series if f(x):f(?:rr—m) .an['d to a Bine
Series if f{z)—= —f(2r —x).

If the interval is (0, 1), we have ingtead of (4)‘\

J‘:f(:f;’)(lx“{ﬂgw'[ flx )cusZm-—(a: ;BM Zax=1, ...05)

"a geries with period unity, \ »
Again, it is sometimes convemm’rdtﬁéjalxmﬂlqylsﬁgrwl in whick
the function is defined as (a, pJ>\"We can deduce the cor:respond—
ing series for this interval fmm ‘the result just obtained.

Taking the series -

21 I Flaydy *_\ZzJ. ’r )eos w(z —x)de’, 0= xz=2m,

Q!

(b @) and () F{Qr(u ay}

we wrife u_a-i-—- o I—-IJ—G—J

Then J.p}‘he interval ¢ =wu =b we hzwe the series for f(u),
\
O [ s 2 B s M )

On changing w into , we obtain the series for flz) ina=2=b,

“amely,
1 T , , 9 :-o_‘ /] , dIn . ,

b_—E;,Lf(Tf ) dx 53 ZIJJ-af(a" )cosg_—a(w %) di’onnnne (6)

The sum of the series (6} is 3{ f{z +0) +f{z~0)] at every point
ne<o<h where f{x +0) and f{z —0) exist ; and at =0 and g=b
its sum ig 1 f (@ +0) +f(& - 0)], when these limits exist.

Of course f{x) is again subject to Dirichlet’s Conditions in the
interval (e, B).
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'The corresponding Cosine Series and Sine Series are, Te-
spectively,

1 (... 2 & n LI aT o, , s
24 Al £ z') eos z —a)dx
b—a]‘af{x)d:r' +b—a2‘ b—a (w-a) a‘f( ) ﬁb-—(a( yda,
aZw b ("N
e b . % ,
b P % 8in - (:.'3 it J.uf(ue:') sin - (" — ) dz’,
1
ez b (8
\/E:‘I. Show that the series ¢ \\
4(. o 1 G ) O
AT TgER Y N\
ia equal fo 1 when <z < L. ,‘:\~
NN
Ex, 2. Show that the series v
et e 2/ wa wx §. 2wa  fmmS
T +— L‘aln T cod I + 2.‘3111 _l COS\‘—Q { }

is equal to ¢ when 0 <2 < a and to zero when o < L

www.dbraulibrasghor; o in
Ex, 3. Show that the series Q ’bf N8
am A
1)1.+1:?32+93+ 2. 1 B-n nE {2 _ Uf}:,gll%-ﬂill f‘_‘l_x_il. (Dyy —wy — Vg COB— 7
iz eqgual to {.&K}En -l »;
by \2 when —:—i/:t:-:li
2 L
¢ ¥y When §<::c<l.
,\”.
Q\Ex 4, o%‘ that the series
2l sin x+sm 2x+sm:§:§ :I
; X ‘o 2 3
AN

r&Qr@sents {r —2) in the interval 0 < z < 2r.

99. Poisson’s Discussion of Fourier's Series. As has been
mentioned in the introduction, within a few yedars of Fourier’s
discovery of the possibility of representing an arbitrary {unction
by what is now ecalled its Fourier’s Series, Poisson diseussed the
subject from a quite different standpoint.

He began with the equation

142
]_‘""W 1+2> Fr GOS’H(.C -—I)
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where | 7 |=T1, and he obtained, by integration,
L(r 14 &
57,—}‘_, | — 27 cos (& —x) 44 f( o)dw
. L 4 ’ 1 A i S I ¢
=51 fla"da +;_1-_"r"|- flaYeosn(n’ ~x)da’,

o~

Poisson proceeded to show that, as 7—1, the integral on the
lett-hand side of this equation has the limit f(x), supposing f{#)
continuous at that point, and he argued that f(z) must thenhe the
sum ol the suries on the right-hand side when »=1.  Agphrtifrom
the incon:pleteness of his discussion of the qlli,StIOI}S ‘eonnected
with the fwiv of the miugral as ¢->1, the conclusion he sought
to draw 12 invalid until it is shown that the sefies’does converge
when ». 1, and this, in fact, 15 the real dliﬁ(,ulty In accordance
with 3‘Lbé’]‘ 8 Theorem on the Power Senids®(§72), if the series
converges, when vo- 1, its sum ig contQuﬂus up to and mecleding
r==1. In other words, it we writey,

T -[ ¢ ’ l i . ! ’
Fir, ‘f')_"‘);—‘ R Sleda -1%@%55_[.3_21{1g4;91%§,#é;§n- z) da’,

we know that, if #(1, x) goiﬁ;ﬁ'é}ges, then
T Fir, 2)=F(1, a).

]

But we have vo { ht,‘to assume, from the convergence of
hm Fr, &),

p->1
that F(1, .l)‘{lOe% converge.
Iy o;-,sm;\ ‘method, however, has a definite value in the treatment
of Ft’\rrwx s Series, and we shall now give a presentatmn of it on
th&‘tﬁou‘ exact Hnes which we have followed in the discussion of

Sebies and futegrals in the previous pages of this book.

© 100. Poisson’s Integral. The integral

1/ B . ' r| <1,
'2_.—.\_.,"f_;_er}ns(:c'--x)+?’2f{x) £y \] J
is called Poisson’s Integral.

We shall assumo that St} 1a either bounded end integrable in the interval

{ =, =), or that the infinile integral \ f{-i ydx is absolutely convergent.

Now we k N L ~I43"f‘"“09’38
o know that T % oosbar - -
when | » | <2 1, and that this series is nniformly convergent for any interval of
8, when » hag anv siven value between —1and + 1.
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It follows that | Lo L1
ollaws tha 2,—_\_.“1 — Zreos iz —.r)J—rzf e
arvl that
1gr 1-32
2:_\-«1 Sreos(x ~ :!:)—’r;r“r(:c
=2—*\" (x")d’ + < 'r”'\ Flaycos nlr - )y ... i
il ‘ S
under the limitations above unposed wpon f{x). (Cf. § 700 1, Cor. T, and\
§74, 1)
Now let us choose s number & between — = and & for which we \ushsthe

sum of this series, or, what is the same thing, the v dlut. of Poisson’s {n}egrai

1= 1 --#2 :’n‘
25 H vl —2rcos(x’ - r2f(x . ,: ‘
Denote this sum, or the integral, by Fir, x). 3 “‘\

Let us assume that, for the value of @ chosen,

lim [ f{e 1)+ fl2 - 0] xj\\’
t—ei) A\

7

exisls. S
Also, let the function ¢b (2} be defined w hef 2 r Zia’ = hy the eguation
B e #h';aﬁhslzlﬁ%%‘%ﬂ‘r .
Then ". N
Fir, x)- 111111 [fx+8+f(x —f)L A
1 1 ﬂaﬂ\
- — v — dx}
QT\—WI—ZJ”CKQ\(SE _x)__r f( *) %t]":(; xH} f 01}

1= (N1-r2
— ]I \

T2l WE DUENAT e e {2)
But we are gif\@not.ha.t Tim | fz+8) +f{x - 0)]
exists i:\;:. t #0
Let thy %ﬁtury positive number ¢ be chosen, as small as we please. Then

to je t‘hem will correspond a positive number » such that

NN
~\J Mz +8) +flm =)= i [ f(x ) +f (e~ B < fe oomnn (3)
\hen Otz i

The number « fixed upon will be such that (& — 1, z +4) does not go beyond

(- =)

Then
1. (-f‘f’?] I~-#2 ,
2:Y e, 1-2r dos(a may e PN

1in 1--v2
oy T Bror T (P31 04 6l = 11
Lin T2
- 2—\n 1% costgsr SN+ o ~1) - hm[f(x-} H+f(x—~1) 1la?i
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1t follows that
P jetn 1-—#2

. €[ 1-r2
e T S (a8 <

47lo 1 -Frcos i+t

ST
4] w1 —2r cost4e?
CEE s (4}
Also, when 0 <r<1,
1 -3 " 1-¢2 . R
]21.:(_[-4- T_[ﬁ-n)I—Zrcos(x"—x)+r“¢'(x)dx N
I 1-¢° w R A o
O A y | d: 28N
221 —2r cos np + 12 J[_,r|¢(x)! v £\ N
1-42 (1 " . . N/ )
- . dx’ 1 r+Ehf{x—1
< T g | M@ I ptE-an|
- -2 "{’" PN £:1
< T:EWXA’ say. “:\ {5}
-2 201 —r !
Bat T %:‘0:—7-}——13 < __{__l.._.?(g:{i;‘o'ir{ 1,
2 ? (1 -1 4dr Bl.l’lzo\g;.
1-r W,
= -Z“:
D u.ia!,%,g;;dbraulibrary_org,jn
1--r £ N N
And — NG
2 ain2 J ‘Q,A
N\ 1
provided that. {\\1’ = - e
O\Q “ ot - i
\ / 1+A Fin 3
It follows that A\
L AE T 1-1 sande|< S,
[2?\(‘!‘\—1: +.\z+\)) 1-2r con (2’ —z) +1* $i) 2
o S T OO 6)

i \i 1>r> —— .
Nod T s:r!.
{\ 14 el b
“’; [} e e
o~Bombining (4) and (6), it will be seen that when any poa::el:e ::{r; :;at
“\has been chosen, as small as we please there is a positive number

\ [ Fir, z) -} lim (flz+t)+fz-41l<s
t—0

when p=r < 1, provided that for the value of z considered m [+t +flz-1]
exists,

We have thus established the following theorem:

5 . or have an

Letf(z), given in he interval =, ), bo bounded and iegiles B1 e
absolutely convergent infinite integral, in this range. Then 1
T i — 72 < o for which

S Yim [ flz+8)+f(z 1)
t—=0 .

evists, Poisson’s Integral converges to that limit as 11 from helow.
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In particulor, at o point of ordinary discontinuily of f(x). Poisson’s Infegral
conyerges to A0+ 1w - 0],
and, al @ point where f{x) is continuwouns, it converges fo flo).

It hus glready been pointed out that no conclusion can be drawn from this
as to the convergenes, or non-convergence, of the Fouricr's Heries ab this
point. But if we know that the Fourfer’s Neries dees converge, it follows
from Abel's Theorem that it must converge to the limit to which Tolzsen's
Integral converges as r—1.

We have thus the following theorem :

If f{x) is any function, given tn ( — =, w), which is either bowwded ond in-i?g;r&fils,

. . . = Vo )\ I
or has an absolutely convergent infinite infegral g fleyde, then, at any pownt 2
in - <2< abwhick the Fourier's Series is convergend, ity sum ({:a’a:lbe enpuel o

lim { S+ ) +f(2- 8], A\

=0 Q9

provided thal this limit exisfs. W

With certain ohvious modifications these theorenfyein he made to apply
to the points — = and = as well as points l:e.twucm}%'anml .

It follows immediately from this theorem thiihys®

fourier’s € 7 et ntinuons in the inferval
If all the Fourier's (“.om\i'\t’c{?{g_ Brzmii}%’{:a‘}‘wg?‘”% comtinuons in the
UL a4
(-, mh then the function vanishes identichiTy.

1f the constants vanish but the fumction only satisfies the conditions
aseribed to flx) in the carlier theoréms of Lhis section, we can only infer that
the function must vanish at alL"r.uints whete it iz continuous, cnd that at
paints where ll_r): [Ale+d +Jf{:v}t)], exisls, this limit must be zero.

Further, if (a, b} iz an ir\ltc}wﬂ in which f{x) iz continuous, the same number
#, corresponding to the arbitrary ¢, may be chosen to serve all the values of =

in the interval (a.-,‘ bY¢ Hor this is true, first of the number » in (3), then of 4
in (8}, and thuglnally of p.

It follows :‘b}ij;it as 7—1 Poisson's Integral converges uniformly o the vefus
Flzx} in any{qéerml {2, Uy in which f{x) ia continuous,*

Thisylast theoren: has an importunt applieation in connection with the
a;;)\grt»;ima,te representation of functions by finite trigonometrical series.f

N\ 101. Fejér's Theorem.}
Let f(z) be given in the interval (~a, ). If bounded, let ¢ be

*Tt ia wasumed in this that flo—0)=f{a}=f(a+0) and fib—0)=f{b) =f(b+0).
;1300 fiz) is subject to the conditions piven at the beginning of this section. Cf-
107, }

1 Cf, Picard, Traité & Analyse, 1 (2 &d., 1905), 275; Bécher, Annals of Matk., (2)
;3{;903)' 102; Hobson, Theory of Functions of ¢ Real Varighle, 2 (2nd ed., 1926),

1CH Math. Annafen, 58 {1904), 51.



100, 103 FOURIER’S SERIES 955

integrable; if unbounded, lt the infinite indogral I Fle)ie be
absoluiely convergent.  Denote by s, the sum of the (n +]_) terms

17 we, 127 , ,
QTJ._”f(:c Y +-T}r‘j’wf(x)cos r{z' - z)de’.

Alsa It oy (x)—_-i“_'i_,‘il_—_i"i‘s_ﬂ:_l_
" O

Then ot ebery point ¥ in the interval — r<<w<w at which f@’H—O)
and f(z—0) exist,

O
m o, (2) =3 fle +0) +flz~ 0} .\~
With the above notation, \ 4
1" cos n(x' -—a:)-cos(’n+1)(m — &) 5,
S“Z'zwj‘ ) 1 cos (&/s) @’
Therefore \ v
I 1 - cos nfi’
o () = D [_ fl’ } — GOQ gt x} Fadiiby: rary.org.in
) S siy %,n(__}) ,
‘?m—[ f( )j sin?d (@' —a} dz
o) sin®{n{z’ :r)
- s’ L 1
‘)raw[\ S} sin?l{z -x) ' )

if fle) i deﬁ;\i@d outside the interval { -, =) by the equation
2 e +3m)=f@)
Dx\\dmg the range of Integratlon into {(—w+wx, 2) and
(@ +2), and substituting «' == —2a in the fiist, and 2 "=z +2a
m’"i}i'the second, we obtain
N\ ) 1+ snﬁna
.[[] fle-2a) sin! "’a

sm Rdtg @)

o, 1260

Now suppose that 2 is a point in (-, =) at which f(‘“"’+0) and
[z~ 0} exist.

Let ¢ be any positive number, chose:n as small as we please,

Then to € there corresponds a positive number 7 chosen less

than J# such that
| flw+2a) | ~f(w+0)j < e when 0<a=?.

oy () = —-
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S‘I.l'!. N

tn n? 1
], P20 i da= [ 4 20 S o+ 0) G e

sin®na

1
Fog /@0 L sinZq da

HT

)
B1ILS Fter
d

I T
Jr,;?-;_.r-.[‘1 [l +20) S

1 I=sin%na
— fr o] A
=1+, + 1+ 1, say.* o ACNE)
Putting C,_,=1%+cos 2a +cos da+... +¢0s 2(n~ l)a, :“:'g
cos 2(n — 1 Da — cos 2na) ‘ '\\
4{1— cos 2a) ! G
(1 cO8 .uaa) )\smzm“f

we have  (f_ 1—],;(

and Got 01t +0u0= —cos 2 \ sinfa
- {trsinda
Thus j szadazd‘[ (Cy KO F or +C,y)da
a
b Crww dbrapli %L‘aryplg in
u—'z?'l?',‘ >

since all the terms on the right- h,ami~ side disappear on integration
except the first in each of thel's"
It follows that ”‘& 1 f(z +0}.
gin‘na sinfna

Also IRES \ﬁlf +2a) —fle +0) | oo sin’a

2 7 sin®na
“Q—J‘ ——fu
> nwly sin%u

A .
N e J‘é'r sinig
N S eita
O nwly sinfa
,",:.' <%{ ................................................... (4)
| e N 1 sin® ??a
\Fm”fh(‘r: a2 e |f(t 29| s
_L_J %) | d
fw SIn%y |/ (z + 20| du

' 1,- .rf" | AN da’s oo (3)

e
2w sindipl, g,

; *This discussion alse applies when the upper limit of the integral on the left
i3 any positive number less than 3=,

¥This infegral can be obtained at onec from {1} by putting f{x)=1in (-7 wh
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Bat we arc given that [ | f&")]dx" converges, and we have

defined f(,’??) outside the interval (—a, ) by the euation
fle +27)=f(x]. ’

Let _f | fle"Yde' =ad, say.

Then we have  |[ )< g
N
Also IS PAEAOH i (8)

Combining these results, it follows from (3} that O
Pl sin®na N

b ‘
Sz Gt da- e+ 0 O

(il
1 A Qg
<l rgis O+ O
Now let » be a positive integer such that\J
L N R )| ()

v s’y

Then LW w;.{':.’dBI'aulibrarr .org.in

X j'_ L 2, \

20 T flo 40 <he e
1o sy

N\ ¢, When nriZp

In other words, 2\

At sinine

Tim —ldg}(“x +20) - de=3fle+0),

oV

113
H—*0 K s1nG

when f{z 1) exigts.
In precisel§Ahe same way we find that

D b in? :
27 m L[ o0 B da= b fla-0)

\ n—ro P sin‘e
“'hqrx\%f - () exists.
i ,Si;hen, returning to (2), we have
~ ) lim ()= 1 fle+0) +f - 0)],
when f{x+0) cxist.

This proof applies also to the points &= =, when J(r -0} and
fl— 7 +0) exist. Since we have defined f{z) cutside the inferval
(-, o) by the equation f{z +-2x)=f(#), it is clear that

J(-m+0)=f(x +0) and f(~w-0)=flz-0)

In this way we obtain

B o =) =3 [f(~ 7 +0) +f(r —0}b

Fr—

Whenf( — 7 +0) and f{« - 0) exist.
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CororLary.+ If f{) is continucus in & = % =2 b, inchuding the end.points,
when the arbitrary positive number ¢ is chosen, the sume 3 will do for alt
values of & from @ to b, ineluding the end-points. Then, from (7), it follows
that the sequence of arithmelic means

[LET LER gy ---
converges uniformly to the sum f{x) in the tnlerval {n, b}

Tt is assumcd in this statement that fix) is continuous #t x—a and x=b

as well as in the interval (&, BY; e fla —0) =f{w) =+, and

S -0 =fB)y=f(b+0).
102. Two Theorems on the Arithmetic Means. Deforc applying this ‘véw y

important theorem to the discussion of Tourier's Serics, we shall pmvc two
theorems regarding the sequence of arithmetic means for any serigany
N

“1+'”2+'“::+'" . ”‘
In this connection we adopt the notation "
&y =ty g b A, \V
P Bt A)

o%4
&
Tarowus 1, I the series v+, +13+ .0 com:ejgé‘mad its aum 18 8, then the
sequvnce of arithmetic means o, also converges fo &%
i i

{i) First, wc assume tlmﬁdmdhmﬁlmwaqmuﬁ that lim o, =0,

H-—+0 Fie—+w
Take the arbitrary positive number e,
Then there is a positive integer Npsu'ffh that
5, | =% when n = N,
Also o |z Bt t L8 sl lswyeb b &[5l
Tn N\ n

But we can choose r >, so that

{fy¥op+ ... +6x -
~L—°l———i;‘j<§e, when 1 =y,

4 n

o N -
Thcmiore\;:> fonl <detd (1 ——) ¢, when nZ=»

R\ <€, when nix,
Th“&” - ) lim Ty =0.
w\\' w4 i
@} Let lim s, = s7#0.
n—rm

*If the series ..:.-, diverges to + {or o — w), then lim ey = +c{or —» )

For, in the case of divergence to 4%, however large K may be, we hnow that
theve is & positive integor N such that s, X, when # = N.
But gp= LSk S v i*?‘_“.“‘_*ﬂ
n T "
The first part tends to zero when n— o, and the second purt s greater than

|
! ( )K which tends to £ ,when ns o0,
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Then O=(u, - &+ gt
Tk hmet fi 178
1e arithmetic mean for « terms of this serfosis cqual to = (-\‘s _ ns) where
— a
AN

P \‘yr; st thus it is egual to (o —8).

But- by (11 the limit of this sefuence of a,rit-hmetic means is zero
Therefore lim e, =
Hoew
Tuuwownd [L Let the sequence of arithmetic means ay, of the series A\
iy F Uy + 10y
converge to o s and either wis, —w,, ) < 1'\ or u(snﬂ s < K, where K s }ome
po.s.n’n‘( copiafurif. N

Then lim g, = * “\

'\,,.
it orw - (
We mayv, as above, without loss of generality, 1ake * O

=0, K=, and ﬁ(8,¢—6ﬂ+1‘1<]~.:f"}
Suppose we are given limt o, =0 and  n{s, ) <1
- \
Tt iy clear that lim &, 35 not equal to +00QR o}, hecause #f this limit

-
Were Sx (0r — ) we woull have lim fyﬂ*— W (or ~o0 ). [CF, footnote on

p. 2581, I D
(8} If possible, ot Hnn s

=4, whz;,rk ‘{ﬁb-ll:%y,l 1(1531'7‘3'@1@1%‘ Sdfitive number.
h==n

Then, it 4 iz any positive nunﬂ)m < A,
2, 71, Tor an infinite mumber of values of u, say M, M, M., ...,

Bk ta the arhitrary poij & number €, there correspunds a positive integer u,

guch that ‘,J
\\ bery | < e, when %= pe

Let 37 be the 1-11‘*-;1; Yol the sequence My, By, M, ... which is greater than u,
and such that N2 an even posilive integer.

Let 25 13g's{}@~]a1-r5_.;e.-.~t cven positive integer not greater than M 4.

TheN‘\:" 20 MA < dp.

"

*Thﬁ proof of the Hardy Landau Theorem is due to Professor A. E. Jofiiffe,
Th& themnm in u less weneral form, was given by Hardy in Proc, London Math.
\ 59" (21, & (1910). 302, In the eartier edition of this book Liltlewood's proof, given
in Whittaker and Watson's Modern Analysis is followed. Cf. alsa do la Vallée
Youssin, foe. e, 2 (47 6., 19221, § 93 ; and Br()m\ﬂt.h foe. cit, (2nd ed., 1926), § 151,
where further reforences will be found, .

T
t¥or if we put U1=”'1 — r, =" ote., and Sﬂ=}.l‘,g .

K’ x?
we have Snzsn‘r;d, and _I:isrr,fﬂrg—g_
T
Thus 7¢(Sn-w3ﬂ =L, if n{sﬁ“gﬂ-f—l)“"«-K'

.
In the other case, we put U, = v U= — KE" eka.

— My
K r
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1
Also By > Sy — 3
1 1 g
3.1:;2‘)'311+1—Mﬁ> i (M MJ—I) L
3
Al 0 eererrernasair b 8y ﬁ’
Bap D™ e e )33_%, N\
and each of thess >4 - & D)
O
My R CITAR R oF- PSS o ST 1r) A W
B'l.ltl Faypp= " +p “.: "5

M ;p) : SO
>M;TPU-U+M+?(A N ':,\
@ N oy
>El'(li —a)—¢ where Gﬁ[ pui %A'
4 \‘

P

Now 4d-a =34 and since, Yo ,—a »>i4d.

S
> T
WW. dhl‘au}llbtzary’org in
A2
Ay
A2
A +4)

H we take ¢ —4—( 1 P> 4}\}Ve have @4, ¢, which is impossible.

Thus W fim ¢, <0.

{il) We shallt now prcwa that lim s =0,

Faor, dpoaétbe, let ].lms )\<.0

Take ,@my positive e number < —A.

Thé}l)!,; < — B, for an infinite number of values of n, say Ny, N, Na, -+
;“A;{fd loryf<e, when n==v,

\ ’ Let N be the first of the sequcnce N, N,,. N, ... such that —%— E,“;— y and

such that between ——— N and ey there shall be at least one positive
. T+3B g.B
integer.

Therefore a—l— 1 A*Tp,jb

and "\TIH-;J

, Let the integer next above

l_ll_\;Bbe ¢, and write%:l +b.

. N N

Then since T+18 < g THiF

we have $B<b<1B.
Also as hefore

&, ‘e
vv=qa.° Flaprt. Fox .
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1
But Sy 1<l 8x t f\l'_
Sy_w 8yl F o < 8y + (—-l— A
g - R A‘T 2 g AN—]_‘-]—i\'r—Q).
<8 +(-—£—-+ 1 1 l)
Sy < X N N—-2+ q+l+q
N-g¢
Therefore each of these < - B+ 7 < - B+h
l\'l' —
Also a,.-<~l%rr,+ N"’(-B+b) O
b . e\
ﬂ—m(ﬁ,—b}ﬁ'é. Y N/
b B N
But B—-b}%B and m>m ',z:“
B-b i o)
Therefors i b{ } e —n ETE J
s \J
and Fy - 2(B+4}
3
If we tale ¢ =4(BB+4), we bave vy <~ &, Wh!bh is impossible.
Thus h%ﬁf 9 bl aulibrary.org.in
- *ﬂ)
But we bave seen that hm 8 =0,
‘ﬂ—‘b.}:l

It follows that L lim 7, =0.

CoroLLary 1. Lef the ge@mre of rmthmehc means «, for the geries
\\ )+ g gt -

%

conterge fo . S
Ifa positine; r;w(eg’erno exists such that [, <£, when 1= R,

where K is a'@mm e number independent of n,

then the%sr‘ies Eu converges and its sum is o,

Tﬁis isa spe-:ual cage of Theorem IT.

- \ ~@030LL ARY TT. Dol uy(a) +itg(z) 4 ... be a series whose ierv‘ms are ﬁmctw?.w
of 2, and let the sequence of arithmelic means uy(x) coNverge wniformly to @ (z)
an tnterval (q, b). =

Thets, if either n[s,(2) - oy ()] < K OF nlspan(z) ~8p(a)] > K when nZivo
where K is independent of @ and n, and the some fig 3e7es Jor all values of x
{2, b), lim s, (z) = ()

Nl

uniformly,
A5 before we may, without loss of generality, put

K=1,0{x)=0, and n[sﬂ(;-:) - spadE)] <.
Then we have le,| <¢, when n=v,
the same v serving for all values of # in (4, b}-
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If s,{x} does not converge uniformly to zero, there must be a positive

number ¢; such that an infinite number of the set
ls@)l, @)l o)l oo -
are greater than or equal Lo e, each for some value of ¥ in {a, 4); that is, there
must be an infinite set of positive integers Ny, Ny, N, ... such that
’ LS,\',{x.\',”, 13,\'2(1'.\'_.)[9 .

are cach greater than or equal to ¢, 4, v, ... being points of (a, ), corre.
sponding to ¥y, Ny, ... - ~

Let N be the first of this set ¥, N, ... which is greater than vy and n,, and

such that Ne, = an even positive integer, aay 2p. o
Then 1 R
Sypilay) = sulmy) - w7 ;'\
2 £
Sypofary) = sa{Ty) — A w\ 3

sentod > sy - K N

And the argument proceeds as before. ¢ ;'\

103. TFejér's Theorem and Fourier’s Seriesz*':}’if”e shail now aze Fejér's
Theorem (§101) to cstablish the converger}cé of Fourier's Series under the
limitations imposed in dvpjsctbdaulibraggoargdimt is we shall show that:
When fix) satisfies Dirichlet’s Conditionsoip the interoul ( ~ =, 7}, and

1= P e e , L
an:%! _’rf(x }d:f N .ct,a——_m_\._wf(:c J cos ma’ dx’,

b, = }-r' FlaSsin ne’ e’ (nZ= 1),
mi—g 800
the sum of the series N\
@y + (7, 008 2 +-b, vin x) +{a@, cos Zx+ b, ain 2x) + ...
is 3012+ 0) +flx— O]t every point in —w < & < 1w where f{z+0} and f(z-0)
exist; and at x=0Dar"the sum is FF( =7 +0)+ Flmr — 0], 1when these Hmits exist,
I. Firat, lqt'm be bounded in ( -, w} and otherwisc satisfy Dirjehlet's
Condition 'h'}ﬁfs interval.t
If thc\{gﬁ%rval { —w, %) can be broken up into a finite number {53y ) of
open. ﬁa;i‘,tial intervals in which f{z) is monotonic, it follows at once from the
5{«‘(!({1’I(i’Thaorem of Mean Value that each of these intervals comtributes to
\La}] or | b, | a part less than 43 far, where | f{«} | < M in (-, =),
Thus we have |at,, cos nx+ b, sin na | << 8pM aw,
where 3 is independent of n.
1t follows from Fejér's Theorem, combined with Theorem II, Cor. I of
§ 102, that the Fourier's Series
g+ (@ cos & + b, sin &) + (@, cos L&+ b, sin 2w} -+ ...
converges, and its sum is }[f{z+0)+f(x —0)) at every pointin —7<T<T

* Of. Whittaker and Watson, loe. cif, {2nd ed., 1915), 187.

i1t the more general condition that the function is of hounded variation in

{—w, r]‘iﬁ taken, then f{z} is the difference of two positive, bounded and
monotonic funetiots, and & similar argument applies,
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at which f{z3:0) exist, and at »= +r iis sum is A -7 +0+f(m - 00,
provided that /{ — 7 +0) and f{ — 0) exist.

II. Next, let there be a finite number of points of infinite discontinuity
in { —w, mh but, when arbitrarily small ncighbourhoods of these points are
exeluded, let f{x) be bounded in the remainder of the interval, which can be
broken up into & finite number of open partial intervals in each of which f{x)

is monotonic.  In addition, let the infinite integral \ f {x')dx’ be absolutely
econvergent. A\
Tn this case, let @ be a point between — o and # at which {4 0) and f{x 20
exist. Then we may suppose it an internal point of an interval {a, b),{Where
b-g<m, and flx) is bounded in (a, ) and otherwise satisfies Dirichlets @on-

ditions therein. W\
B Pt
Let wa,’ :R Ji&") cos nz’ d:c’l AN 3
:: n=1, \‘
and ﬁ'bﬂ’:\ Fiz") sin ne’ da’ J ’
i
. ] '\\.:
whi 2ra, = = ydz’. ‘x;.
) s = ) K

Then, forming the arithmetic means for :th}:éﬁes
@, {6, cosx + b, sin &) me&ﬁﬁm%xbfg_-in

we have, with the notation of § 101, ’v ’
T

1 i {2y~ l‘&%ﬂ x’

T, s § msé(x
1 iﬂt\al smm 3ib— %)
- 2g g
T 5@‘ Fla-2a) < ada—l-‘ flz+2e ) T }

where 4(z - n)y 'm}] 1(!: —x) are cach pomt,we and less than }n’

But it wilhe scen that the argument used in Fejér’s Theorem with regard
to the )s{e}mls
\ \ it

.'

B]n ?bG_'.
“sinfa

" applfm equally well when thc upper limits of the integrals are positive and

A

icss than w.%
Therctore, in this caze.

lim o (x) =} [l +0)+flz- 9_)3;’

And, as the terms {a,’ cos ne+b," sin nx}
sstiafy the condition of Theorem IE of § 102, it follows that the scries
2y + (@, 008 &+ by’ sin &) + (@ cos 20+ by’ s 20) + .
converges and that its sum is lim 8,(x).

H—

.
*¢f, footnote, p. 256,
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n
But {a, —a,) + X {{a, -, coanz + (b, — b,") sin nx}
1

[+ b+ Eoosnter -mar

zz_l'rr{r_“ ‘ }f{ )Bm§2n+l_}l(_:c —x) da'

sin (x" ~ @)
lEi" sin (2n + L 14 sin{2% + Ll
== -2m) - o+ - x4+ 2 d
T 4e— a}f{x sin ¢ * \i(b ) f( “) sin o
By § 94 both of these integrals vanish in the limit as n—o . O\
It follows that the series G\

'\
o Ny
(% — ")+ Z;{{% —a,)cosnr+ (b, — b, )win T} W
converges, and that its sum is zero. '\\
But we have already shown that O

n
ay -+ 2w, cos nr +b,” sin m}\\;
1 ny
converges, and that its sum is AN
% 3
H Az -0y + f(= “O)J'
1t follows, by adding %“}v&megmm% drg.in
ay+ E(aﬂ cog 'xt;\:"+ b, sin nx)
converges, and that its sum is A
%,Kf(“’ 0+ f{x—0}]

at any point between - g and’w at which these limits exist, )

When the limits f{ — 7 8) and f{# —0) exist, we can reduce the discussion
of the sum of the se;ie% for 2 = 7 o the above argument, using the equation
fa+2my=rfiz). £\

We can theljw\l'%&t ®= dw as inside an interval (g, b), aa above.
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' EXAMPLES ON CHAPTER VIIL
A. In the interval Vox-= -;, Flx) :i -z,

and in the interval 4 <z<i, fla)=a —2 L

2
2y fmx t Grx 1 10w L\
Prove that flz) =3 (coa - tgeos T +E’) co8 ~ 53—+ ) AN\
/\ The function f{#) is defined az follows for the interval (0, zk o
fl#)=3x, when O0zaxjm, A\ 3

f(x) :éﬂ', when 117'- P ‘g,.-’ o\.\'
Sz ={r—=), when §r=rx=al)
Show that
i D B Y i _ \
sin 3(2n — 1) sin (2n Ux,.ﬁﬁ}li'(”ézgm
(Zn - 1P 'y

/3 Expand f{z) in a series of sines of mplﬁil;lhs of wxju, given that
Slwy=max, wwgﬁrg%ﬁﬁai‘y,org.in

) =m{a —2),ohen 6= o=

_...4. Prove that S
; I as ! i
— . — e — il
oy %,;__.,;__; & —, when Q{x<
\ 2nwe
4 x\x\l"’ B3 T hen =z =21
and (%I \N:]_Q_F?r_z?—né_, w =

5. Obtain ane%pdnsion in a mixzed series of sines and cosines of multiples
of z-which is zérdWetween — and 0, and is equal to ¢ between O and , and
give its valuﬁ';-&z%’r: the three limits. )

6. Hig{x\t‘haﬁ hatween the values — and +7 of 2 the following expansions
hold ; ™\

™S . 2 . sine Zsin2e 3sindz )
NS sin mx:ésmmfr(—-—]zq_ma-- o TR

M\:" 2 . 1 socoss wmeos2y mcos?ﬁt_“)
©08 T =" sin mw (554« [ Eprw Rl S eI

coshmz 2/ 1 mcosxz, meosle 7 oo dx )
sinh v % (251 TiErmE 2ymt 3w
7. Express ? for values of  between —= and 7 a3 the sum of & constant
and a serics of cosines of multiples of 2.
Prove that the locus represented by
E —1 .
5 L__.l%“__ gin n sin ny =0
7w
18 two systems of lines at right angles dividing the plane of z,
of ares, 2.

Y into squares



8. Prove that

T ::_3 EL;+ :\_;: ﬂ% < o sin ?a;_c e Ter] .,3_{,;}.9- ‘| Y] n{; %
Tepresents a sories of circles of rading e with their contres on the sxis of o
at distancos 24 apart, and also the portions of the axis exterior to the eircles,
one cirele having its centre at the origin.

9. A polygon isinseribed ina circle of rading e, and is such that the alternate
sides beginning at =0 subtend angles « and # at the centre of the cireles

Prove Lthat the first, third, ... pairs of sides of the polygon mag be representad, |

exeept at angular points, by the polar equation \' \".\
' .o . 2 « \/
r=e, sin— —-la,sin -, 5.
T T A
" . AR
tylor . hmm ; e ¢34
where L( _'__m =gin - ﬂ,_- Fator g\ ocoE - ' '), S0 (ﬂ)ﬁd\ﬁ"
EH 2{a+ f) 2]y t— f} ')

. Ry
ww(2a1-8) ¥ it 'y
+8in - —— coR cos S dsec b dgh.
| Tarhy 2, s A
Find a similar equation to represent the other sides?
% 3

10. A regular hexagon has a diagonal lying é}c;ng_ the axis of . Investl
gate a trigonnmetrical spebes, cbballibriimargetit the valua of the ordinate
of any point of the perimeter lying abowf‘ghb axts of x.

11, If 0 < & < 27, prove that ~j,’"

minha{z - x) __‘»si"n ¢  2sin2e  3sin 3z
2 sinhor ANgE. et e taae

12, Prove that the cqua}x%n in rectangular coordinates

_ 2 ..,:45“:‘( e, 1 2 1 are k
y‘g’k\‘[}r? GDS7T2—2(‘.OS— -{"3—200\‘;—-? = s ﬁ

represents ser{&“of cgual and similar patabolic ares of height & and span
2k stunding{f‘tj.éhtacb along the axis of x,

;

13. ;‘}.p'}rcs of equal parabelus cut off by the lalers rectn of length 4s are
arr:};,l%egi’alturna.tely on opposite sides of o sitaight line formed hy placing
bh({lﬂ.tera recta end to end, so as to make an wndulating curve.  Prove that

@equation of the cutve ean be written in the form

T‘_sy—_siﬂﬁ ;_1 3wy 1 . Bmr
e T da Oy e NP g T

14, T¢ civeles be drawn on the sides of a square a8 diamoters, prove that

the polar equation of the quatrefoil formed by the external semicireles, referred
to the centre as origin, is

r
4a\_,2—-_r-‘-1-‘-g(20$40—i.,‘_.._ cos 8B4 eos 1201 ..,

* where g is the side of the sguare,

15. On the sides of & regular pentagon remote from the centre are described

N\
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segments of circles which contain angles equal to that of the pentsgon; prove
that the equation to the cinquefoil thus obiained is

oy
rr:Satang[I 23 - cod 5ul)
1

PEf|
o being the radins of the vircle eircomseribing the pentagon,
) —/1§.’_’In the interval O=x = ; , fle)=nt;
and in the interval é-{ =l flz)=0

Express the function by means of a series of sines und alse by means oha

geties of cosines of multiples of T Draw figures showing the fumt’bns

“’"
represenited by the two series respectively for all valucs of © not restmuted to

lie between 0wl I, What are the sums of the series for the y'a:hle x:é 1

e
17, A poinl moves in a straight Jine with a velocity 'w}ieh iz initially «,
and whick receives constant inerements each equal th ¥% equal intervals .
Prove that the velocity at any time ¢ a,ftc:r the be"wn of the motion is
t Qi
T —au\"’—r
2 r w ”=,1 W\

and that the distance traversed is

wr www dfn aulibhrar

ud yorg
é;(“‘ T+ '5'2—";53_. 4 208 —T-—t es [x. ¢ above.]

18. A curve is formed by the pgmtwe halves of the circles
(@ N\dn+ a)? +y=a?
and the negative halves oisf‘he circles
f.a: {47 - 1}aR +y2=d?,
# being an integer, 1\0\ ¢ that the eguation for the complete curve obtained

by Fourier’s method is
x 2l

2 L 1y 73 oy g0
¥= r;g\? (- ])x_lsin(x—;)nr—x\{ sm(x»é)a-v’a?—x’?dx.

19, H‘ng given the form of the curve y=f(x), trace tha curves

:..\'.,”f‘o y= _%I_ ?‘, min rx] fltysinvidi,
M\\ W r
Y 423111{21‘—-1}3‘{ ieysin @r - Dt

and show what these become when the upper liraif is + i 7 instead Of“

b
28, Prove that for all values of ¢ between 0 and 2 the sum of the series

b TR ﬂmt
2 Slll m—l‘ 7

is zero for all values of z be‘m een 0 and b —at and between at %5 and I, and

{
ig 1 for all values of » hetween b — af and aé+b, when b= 3
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21. Find the sum of the series

o € —p
S Ssin2nne

— ’

T om
_ 1 Gsing2a - ljra
R Sn-1

and hence prove that the preatest inleger in the positive number x is repre-
sented by »+u— 82 (Bee Fx, 1, p. 250, and Ex, 4 above]

2%, I x, y, z are the rectangular coordinates of a peint whish moves 50 ¢
that from #—0 to y=x the value of 2 is x{a? —x%), and from y==2 to yza
the value of 2 ig x(a? — 2}, show that for all values of x and y belween 0 a{nd.ti‘

z may he cxpressed by a series in the form 4 }
~ . PF (R g (y+al AN
Zdp,y Ein 3 (_a ) sin 35 S ( Y ,)' f" }

2

and find the values of A4, , for the diffecrent types of tcarnls...~\\’

. \_/23" i flz)y=1x sin x, when ’

and flaey=}w, when {r<x

prove that, when 0= r<r, K
HES) }-r sin .r:+Sl+S2 ,Sa,x

where

6 .
_yinfzr—..,
7

ww_c[h_}‘%'_lﬁﬁ amc 91 e+ [
Sy—sinz+} sm:&r+1 sin 5z + ..
Hy=sin Bx —4 sin B + Lsin ldxe+...,
and find the values of §,, §,, and S ﬁepa,rately for valuers of x lying within
the assigned interval. [Cf, EEQ’ P. 250.1

£.3
(Y sin3xz aink
\,24:-\[{ f(a’}éﬂ—s(smx— 11:1%2 +%ﬁ_“')
O 2/, sine si -
."\,} +1;<me_sm2x_t_51n33x_m),
show that f(n:}:‘i(e(’mtinuous between 0 and or, and that f{m-0)=L Also

show that)&(::;]\,:l;és a gudden change of value 2 at the point 7; [See Ex. 1, 2,
ki
pp- 24%-'3?-]\

Kot
\’\3“(;)% sin 320 —1)r_,&sin (2n - Dz | 62 sin 4(2n — D sin (2n LI
20 -1 T In-1 T {2n - 1%
when 0T xZim
Show that JF(+0)=f(r -0} = -1,

ST 4+0) ~ fikr —0) = — b=,
JOw+0) —f(3r —0)= 7 ;
also that JO)=F(3m) =f(3m) =f(m) =0.

mew the graph of f{x) in the interval (), 7). |See Ex. 1, p. 250, and Ex. 2
above.]

ETE S R e A sy




CHAPTER VIII O\
NS ©
THE NATURE OF THE CONVERGENCE OF FQURIER'S
SERIES AND SOME PROPERTIES OF JOURIER'S
CONSTANTS o\

104. The Order of the Terms. Before ez{tering upon the dis-
cussion of the nature of the convergence of the Fourier’s Series for
a funetion satisfying Dirichlet’s Condnitifjﬁ, we shall show that in
certain cases the order of the terms‘wiay be determined easily.

L If f(z) s bounded and otheraisé sabishos Dirichife ¥Condstions
in the interval (-, w), the coefficients in the Fourier's Series for
Ji&) are less in absolute valuwe than Kjn, where K ds some positive
number independent of # :

If the interval (- ana) can be broken up into a finite number of
open partial intergald ¢,, Cpyr) in Which f(2) is monotonic, it follows,
from the Second Theorem of Mean Value, that

o \
W“ﬂ:‘?‘ig'{f{x) cos nz dx

O\ “I £ Gl
R .‘;:EL f(c,—i—(})I cos nz dx + f{e,1—0) ; €03 m:dz},
‘SN °r r
\m?"hel'ﬁ &, is some definite number in (¢, .41

Thas  rlag| <2 S| e, +O)| +[flern= O

ipM
“n
Where p is the number of partial intervals and M is the upper
bound of | f(2){ in the interval (- =, =)
Therefore la,|< Kjn,
where K is some positive number independent of #.
269

<
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270 THE CONVERGENCE OF FOURIER’S SERIES [ok, vin

And similarly we obtain
[b,]<I[n.

We may speak of the terms of this series as of the order 1/n.
When the terms are of the order 1/n, the series will, In general,
be only conditionally convergent, the convergeunce being due to
the presence of both positive and negative terms.

11. If we are given that f{x} is of bounded wariation in { -7, 7} the saihe
reault follows at once, sinve f{x) = F(z) - {x}, where Fx) and ({z) are bn}md{d
and monotonic functions. PR

1IN, If f(x) is bounded and continuous, and otheriwise Salisfies
Dirichlet's Conditions in —a<z<<w, while f{x -0 f( = +0),
and if f'{) is bornnded and otherwise satisfies Dhr, arl‘kf‘ Clondatrons
in the swne inlerval, the coefficients in the Fuorrréry Series for flz)
are less in absolute valiwe than K[n?, where K 13\310}:?3 positive number
wndependent of n. \"

In this case we can make f(x) contipupas in the closed interval

(=7, =) by giving to it the valyes f{Ax +0) and f{a - Oyatv=—7
and = respectwely wrw.dbra ]}eb a‘gy W

Then 7a,= f {z} cos n:ﬁ dw

[fkksu’t 2% Tr - ?1% _I.1r frf’(:.:;] sin na di
X7 —J f'(=) sin nz de.

\n

But we hamjust seen that with the given conditions
"’\‘s.

& A r J'{z) sin nx dz
is ofs ﬂie order 1/n. "’
e \11; Tollows that ey Kfn?,

here K is some positive number independent of =.

A similar argument, in which it will be seen that the condition
S(#= - 0)=f{ - = +0) is used, shows that

(hal< K /n?

Since the terms of this Fourier's Series are of the order 1/n%
it follows that it is absolutely convergent, and also uniformiy
convergent in any interval.

The above result ean be generalised as follows : If the funciion
J(@) ond its differential coefficients, up to the (p—1)*, are bounded,

Q!
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continirous and otherwise satisfy Dirichlets Conditions in the
interval — m<lw<lw, and

= w1 0= =0, [r=0,1,... (p-1)],
and if the p'* differential coefficient s bounded and otherwise satisfies
Dirichlet’s Condilions in the same interval, the coefficients in the
Fourier's Series for f(z) will be less in absolute value than K/nrt),
where K 43 soine positive number independent of n, £\

105, The Riemann-Lehesgue Thecrem,* and its Consequences. Let f{w{be
bownded and (nlegrable fn (a, B), or, 1f f{x) s unbounded, !et( Fla)du bafxﬁsoluteiy

comtergent. 4 ‘,}
sm A
Then lim ‘ Sl e =0 D
o Cos \

{a) Let | /(2] be less than 41 in {a, b}, and ¢ the usua} arbitrary pesitive
nuwmber,

There is a moade of division of (a, b}, say a= xg,c:ia,\xg, wor By gy Epy =1, BUCh
that & — & for it iz less than e (§ 42). \ it

h
r

Thus l Fleysim nrde = S \ [f(a,,} +(f(x} - fla,)] sin ne de
R 1 |

\&‘ww d lib
=S { | fla)] H surm: d,x[b f)‘:'_ll [lﬁlx?r:flisg:,.;]]]sm nz|dz }

- >m‘—1 QE {Jf v — mir )(# —2y._,), with the notation of § 39
ki .

2med :\ }

- —:ﬂ-%\(s —8)
~%m}1 21,

SR
,,\‘:\ < ¢, when nZ= dond 1
Henc'é% lim \a f () sin ne de=0.
2 - e

;}nd n the same way, Lim \ fizx) cos nedr=

\3 WO
\ }If { Flx)dx is an absolately eonvergent infinite integral, according to
the dehmtmn of § 51, we havo only a finito number of points of infinite discon-
tinuity in (@, B). .
As we can treat these separately, it is clear that we necd only discuss
the case when 4 or b is a point of inlinite discontinuity, We take the latter
alternative,

erke, 1 (2 Aufl,, 1892) 254] for

*This theorem was proved by Riemann [Math: W s with &
i)

the functiuns stated in the text, and extended by Lebesgue £0 functi
Lebesgue Integral [Ann. se. de I Ecole normale (3), 20 (1903}, 4711



272 THE CONVERCENCE OF FOURTIER'S SFRIES [om, v
In this case, there is a point 8, between @ and b, such that
[
a)|dx = Le,
|, [/ < b
it : i |I-s . o . |
Alzo “ Jix)sin nx fi".i:l —|I\ Sleysinne dr+| jj(x} EXTIRTE a’;r.il

'3
= “ Flay sin wr dx
Py

b
© '\ﬁ | £y | el
But f({#) is bounded in {n, }: and thus, by the above, we know that N\

“ Fixy sin wr dx

< ie wheo n=r

A ¢
2 AN
o\

N/
Therefore

\ Jla) sin ne da

#nd the theorem 13 proved, ">

The following results can be deduced almost 1mmedmtc‘l«\fﬁ3m the Riemann-
Lebesgue Theorem.  In all of them x, is a point of thy intbrval {~=, w): ond
f{#) is subject ta the conditions named in that ﬂu@«en. . it iz bounded and

<l he-bde, when nilv,

7NN
S )

H
integrable in (.- w, #), or, if unbouaded, the m’f@ﬁral l Jiw)dy is absolutely
convergent. N\ /

(i} The Fourier's (‘o:is(a cifb a{lliufnd B, Méz‘; tend {o cero when n—s%.
11y The behaviour of the Fouriers\8erics corresponding to f{x), as 0 o

vergence, divergence, or oscx?lanmwg & point x,, depends owdy on the values of
Jia} in the neighbonrhood of xy, ™9

Here, with the hotation f{’ﬁ 05, we have
! mE rery N sin }{2n + 1){7" - %)
LSRN et

tg— 1 sin ' — )
where (it - 2y, ﬂ"‘ly%y} is a neighbourhood of &,.
Thus A\
- ] i :
g, 'ru} Sl\ﬁL ! ~ 20} sin (20 + lja et

sin a
\ \x(‘f fo) 2+ 2a )sm(2ﬂ+l) sin (Zn+ Do 5
Flna

\B‘y the Riemann- Lebesgue Theorem, the first and second integrals vanish in
\ ‘t‘he limit when # »2¢: and the result follows.

(i} The beflaviour of the Fowriers Series corresponding to f{x) in an interval

{a, b}, where — 7 << a<b << w, us fo convergence, divergence, or oscillation, depends

only on the values of flx) in (n~8,b +8), where § is an arbitrarily small positive
wrnber.

This is proved as in (i),

d"'\ Sy +2a) -

iy If fl is of bounded variation in a neighlourhood of T, the series converges

atxy fo & [ fx, +0) Hf (7 0)]

Asabove, lim s (o) =2 lin | fia, 00 2202 D g,
fl—-a3 11T £

and the result follows from Dlrlc-hlct‘s Integral (§ 94).
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If hm Cfwp +F) =y — A)] exists, and 2f(x) i is taken equal fo this limit, two

Impurtanf sueicnt conditions for the convergence of the Fourier's Series
at &, to the vaiue flwx,) are given in (v} and (vi). They are usually called
Dini's Condition and Lipschitz's Condition. 1o both

i) =7 (rg +20) +.f (g — 20} - 2f ().
{v) Dini's Condition.* The Fourier's Series corresponding to f{x) has flx,)

for 1ls swm when w==x,, if there is a positive number 1y such that [ Lbtez)| da is g

o Q@ "N\

cutwergent nlegral.

For, we see from (ii}, that lim sﬂ(:co) =f(,), provided that ) \s\

. . £\
lim '! J/f{ro—.2a)+f 2a}_2f(xo)}'sin~%l:—-l—l)t1du=:@;"
i, if lim 1 o) SM =0, . \
e-ran 0 sin @ . ..‘\
Also 4 " pla 319—5%‘@}% } 1‘f’(“3|ara i 0 <y <i.
AN

{vi) Lipschitz’s Condition.t The Fourier's 'Se{aas corresponding fo f{x) has
Jlxg) for s gim when w=uwy, if positive mugders O and k exist such that,
L+ ) =S (xg) | = Ci\E, when |t] = some fixed posilive number,

In this case, there is a value of 5 {0 %hﬁtﬂb“alﬂibral'y,org_i n

| [z + 20 +. g — 2a) —‘?57:(5!:“” < 28 Mgk, when 0 = .

And ':\q ¢la) Mf_l_)gd ‘ {’-2’50\",’ ak -1 da,

g Nain o
which can be made as sms H\s we please by taking 5 small enough.
This condition is a s&o&uﬂ casc of the preceding.

108, Discussion 4fs case in which £(x) satisfies Dirichlet’s Conditions and
has an infinity 111{ =7, .1 We have scen that Dirichlet’s Conditions include
the POSSlblht\\U @) having a certain namber of points of infinite discontinuity

in the m(r%i subjuet to the condition that the infinite integral } Slxydzis

abeolut’ek convergoent,
Let s suppose that near the point w;, where —7 <&, <m, the function f(z)
- \1.8 guch that

/ P2y
\ f(x) ‘_{? x )y’
where 0 < v < 7 and () ia monotonie to the right and left of x,, while ¢{z, 0}
do not both vanish,
In this case the condition for absolute convergenee 13 satisfied.

*Dini e di ; X ; itich igni di ung
Dini, Serie di Fourier e ullre rappr i a delle funzion

trinbile reale (Pisa, 1880), p. 102
Lipschite, Journal fier Math., 63 (1864}, 296,

i8ee zlso Ex. 5, p- 241,
oI, 3
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Then, in determining «, and &,, where
Tihy, = " Sl cos nade and  wh - |l (e sin n A,

we break up the interval into

(- a)y (o, Tl (e By ansl £ =0
where {2, £} iy the interval in which f{x) has the piven fonne In(-w, g
and {f, 7} it is supposed that f{e} is bouwnded and otherwise satisies

Dirichlet's Conditions, and we know from § 164 thor these partial intervals
give to a, and b, contributions of the order Lin.
The remainder of the integral, e, in«,,, i3 E__‘l\l n by thv =utn of

N ¢
frg-d ¢\
lim \ ' Ple}_ - cosmzdr and lim '| - _J L 00 J!\
S}/ (x _J'c E—rD gl i I:? Tt . \J
these limits being known to exist. “3
We take the second of these integrals, and apply to it the “\m:ond Theorem
of Mean Value. m\‘
Thus we have
i;s bl cos na e = p(, +S]\ Con T r’t,\ i I| G oR N d,
5 R i JI : —
lepra{x—ay)¥ v ks (2 3, \ 3 i =
where a,+8= £ 5% L Q“
Putting #{x — x5 =y, we obtain
2 ) wmf_'.y;- dﬂ@gf{’gﬁal& S}) .u(E < rn) cos (1 + -;_z_:_y_:;\jr iy
Jry b d (-17 )" H§ a8
Ll ﬁ}\n.ﬂ ”’“W—“_u-d,
Tl af# " 4
b cos co8 {17+ niyg) & ; sin in y
But { T} e - MY g,
L o (Z cos nz,}\ ey — sin nry I e dy
Also when a, b aro posi 'Q:‘"'
B ol |
NP2t gy| s g,
a ¥ B |

are hoth less than défimte numbers independent of @ and b, when ¢ v-< 1
Thus, w hftto\'&\pbmtl\ e integer = may be, and whatever value & may have,
subject tu Qf?ﬁ S i R
"\ iﬂ d)(.’,l‘) - K”H] -,
R R
whermfé’ is some positive number independent of o and ;

\R tollows that

R cos nr dy
\\

|]1m ('B "ﬁ(x) !

o s (o — gy cosmdxi{K {n1—-v,
A similar argument applies to the integral
[t iz
la {g-z,p
It thus appears that the coeflicient of vos nx in the Fourier’s Series for the

give.-.n function f{x} is less in absolute value than K jui-», where K is some
positive number independent of =
regard to the coefficient of sin nax,

cos na .

and a corresponding result holds with

It is ensy to modify the above argument so that it wilt apply to the case
when the infinity occurs at tox.
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107. The Uniform Convergence of Fourier’s Series.* We
ghall deal, first of all, with the case of the Wourier's Series for
flz), when f(z) 1s bounded in (-, ) and otherwise satisfies
Dirichlet's Conditions. Later we shall discuss the case where a
finite number of points of infinite discontinuity are admitted.

it is clear that the Fourier's Series for f(z) camnot be uniformly
convergent in any interval which contains a point of discontinuity ;
gince uniform convergence, in the case of series whose terms afe,
gontinuons, luvolves eontimuity in the sum, O\

Let fli) be bounded in the interval (-, %), and otherwige Sattsfy
Dirichler’s Conditions in that interval. Then the Fougler’s Series
Jor flie} converges unaformly to f(z) in eny interval wfticﬁf containg
neither in is inlerior nor at an end any point of, d@oﬁt’imﬁy of the
function.t N4

As before the bounded function f(z), satisfying Dirichlet’'s Con-
ditions in (-, =), is defined outside t-h{r{ihterval by the equation

fle+2m) =iy

Then we can express f(z) iwemyltntataba-gprgtan, 27)—as
the dilference of 1wo functionsy which we shall denote by F(x)
and (i), where F(z) and Gt}v)'are bounded, positive and, mono-
tonie increasing. Theyxe also continuous at all points where
Six) is eontinuous [§ :3»(5& or § 36.2].

Let f(x) be contifitous at @ and b1 and at all points in a<x<b,
where, to begin #ish, we shall assume — <@ and b<Zm..

Also let 2 ,b{,\a'ﬁy point in (@, b).

Then with'the notation of § 95,

O -~ i 1(9. '
Q[ it

sin 2z' — %)
o I sin ¥
m\J = . T 4.9 — da W}]e]:e m=2n _[_'l§
\V ?T.f_gwf( +29) gna
-
*Zee fontnote, p. 230. |
tIt will be seon feom § 104, (ii), that if (e, 6) be any intew'a.l cor;ltamed '11;
(-7, r}such that {(z} is continuous in {u, ), inclading the' cnd—polmts, t-be a.ns“ti
to the question whother the Fourier's Series converges umfurl?lly in {a, b}, or !:10‘ 'y
f]‘epend;, only upon the nature of f{z) in an interval (&’ 67, which .mcludes {a, b) in
Its interior and exceeds it in length by an arbitrarily small BmMout.
tThus flz - 68) =fla) =fla-0) and f(B+0) =f(p) =f(b 0.
v —w4x, T+ in the integral before
A Ct. § 101

§Wo have replaced the limits —=, = b ,
ohanging the varisble from z’ to « by the substitution #’ =2 +2¢.
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Thus

o 1
5.() = ﬂ o +20) "2
0 _i"" [

i
—lj' Gz +2a )“‘m L P (1)
Ty _in na

We shall now discuss the first integral in (1},

b
I Flz +2a )sm mo da,
b n o

)
% y A\
i IFQH“) )§1_nmrxd +J' ¥(x —2a )Sm”“cla. ’\”\;
9 LAY
Let ¢ be any number such that 0<<p<<}w. D ’
Then e\
i sin e sin ma )
J-(, Flo+20) 5y da _F(x+0)j. sin ax'ég'
R&
[ (P +20)~P(z 0 }"”1];";‘* da
wiww.db gullbra(jﬁar‘g in
I {F(m 3 30) - Fl —I—O)‘ sm o,
[T
=1 —i—l’2 4T, SAF. eeeeiiiiiieernariniaans (2)

We can replace Fix +8~)\by F(x), since F(z} is continuous at &.

i #
But J S%:l\)ada~[ (142 2008 Iru) da=4m.
0 LT .

Thus  Q > Im 3 PU). eoeeeeeeeerreessnrsres (3)
Also {{{?f‘%-‘)a) F(z)} is bounded, positive and monotonic
mm&ﬁ’m‘g in any interval; and ? is also bounded, positive and

n;QnBtonlc increasing In 0<Cg= 4.
N\ Therefore we can apply the Sccond Theorem of Mean Value to

the Integral
j'*‘ #(a) sin ma da,

where $la)={F(z +2a) - F(x)}
It follows that

sin o

I,={F(& +2p) - Fz)) su‘l: "’mama da,
where 02§ = p. .
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But we know that

' 2] ! i
: o mé

Therefore [121<{F(m+2,u) F(a:)} Sf;"" ................... (4)
Finally  L=(Fe+2) - P 272

" sin ma O
+{F(o+r) - F{x}}L e

-f - 7 '\“\'
where u = & = . A
But, if 0<f<g=1 211-, K
G ] "
J‘ S}E_ma J‘ sin ma da + 8111 ma .
g S @ nf 4;,
where 62y = g,
Therefore j sin 1L e e do < {cosec b +~E&eec @)
| sin g
<?-;3 cosec 19
It follows t-hat "“"’"W dbraulibr "ary.org.in
— F - Flz)}
!13!<m T #[{F z +2zrf) Fle) HF(z+7) - Fx)]
LSS SR (5)
81 gl

where K is some \p}smve number, independent of m, and de-
pending on the. up‘per bound of | f(z)] in (-, #).
Combining\(8y, (4) and (5), we see from (2) that
:t\“' it
SO P t2a ) S Gy 4B (o)

\J i

O\ e % "
RN\ <{F(x +2u) - F(x]}m sl
N\
“\“A similar argument applies to the integral
N i o,y SITL gt da
0 Flo =205y o

but in this case it has to he remembered that F{z—2a)’is mono-
tonic decreasing as a increases from 0 to }.
The corresponding result for this integral is that

. A H
| 5[ Flo—omSnmeg, %F(w)s
1Ty 1N o

4K

sin p +mr sin g’

ceeee(T)

<[ Flz-2p) - Flo}| ==
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K as before being some positive number independent of i, and
depending on the upper bound of | f{z}| in (-, =).

Without loss of generality we can take A the same in (6) and (7).
From (6) and {7) we obtain at once

] riw
l Flz +24) 8111 L de— F(x)
T —iw
y e oaty 8K O
<§1}1;L{|}f x4+ (@) +|Fle—2p)— Fle)} + ;f'.-"q]l]‘u' (&)\
Similarly we find that O
i T ,.,'}‘
| -1-I Qo +2a0) 0 " da— )| N
i i 8 ! '\g'
Gz +2p) — G| + |G S TS M S
cml ,u{| % +2u) - Glz)] 4] 2 = !{QI’I Caew sin g
Thus, from (1), .".V\ ’
| (3 x\

_j‘ fle +2)smmad f) ‘

et
www. dbraulibr any ‘or g.in

G P+ 20) - FQRS G2y~ F

blIl H
+|G(z +2u) —G(.L | +| 6w —2u) - Glc) i}
TN

Now F(z) and G(:n) are continuous in g<z-<<h, and also when
s=aand z=5, N

Thus, to thedarbitrary positive number e, there will correspond
a p051t1ve wﬁber tty (which ean be taken less than =) such that

[F(x +2u) — Flx)l<e, Gz +2u)— Gz)|<e,
when“‘tu| S g the same g servmg for all valnes of zin a=a=b
\A)so we know that u cosec p increases continuously from umty
to %7 as u passes from 0 to }

Choose p,, as above, less than 1w, and put g=p, in the argu-
ment of {1) to (10}. This is allowable, as the only restriction
upon x was that it must le between 0 and 1.

Then the terms on the right-hand side of (10}, not including
16 K/mm sin py, ate together less than 8¢ for all values of & In
{u, h).

So far nothing has been said about the number m, except that
it is an odd positive inteper (21 +1).
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Let #y be the smallest positive infeger which satisfies the in-

equality
16K

@rg + L) sin jag
As K, uy and e are independent of z, so also is ;. We now choose
m (i.e. 2r =1} so that » = w,.

Then it follows from (1G) that

|3 o(2) —f(2)} <9, when nn,

the game n, serving for every s ina=x=54 O\

In other words, we have shown that the Fourier’s Sefies con-
verges uniformly to f{z), under the given conditions, in-the interval
(g, D).* ?

¢ ?
H f{ -7 +0)=,{x -0), we can regard the points —,!_—'m,"’i\ZW, ete., ag points
ab which f{x). extended beyond { —m, 7} by the equidion f{x+ 2a) =f{(x], is
continuous, for we can give to f{£) the comrp@walue of f{ ~wr+0) and

flr -0y Qg

X
108, The Usiform Convergence of Féuxer's feriest (continued). By
argument similar 1o that employed it Eﬂgﬁ%@ﬂ}ﬂghkm‘ﬁ‘hﬂn be proved
that when [z}, bounded or not, saLisﬁ:és'Dirichlet’s Conditions in the interval
{~m, =) and j{z) iz bounded in thé interval (e, b) contained within { —w, 7},
then the Fourier's Series for f {a:)‘coﬁverges wniformly in any interval (g, b} in
the interiar of {a’, 0'), providedV(=) is continwong in (a, b), ineluding its end-
points, O
But, instead of devé‘l@ﬁiig the discussion on these lines, we shall now show

€.

Q"

*1b may hely \h’u» Teader to follow the srgument of this section if we take a
special case : N
N By flm=0, -rZaIb }

Ther %@Jvef fx)=1, O0ZzIZm
.f;”o T e, e { F) | )
QO J CCmrca<ow | 1| L]0
5 .
—
_r_.g_‘

0wz b ., the interval {a, #) is an interval in which f{x) is continuous.

The areument, of the preceding section will then apply to the case in w}n:ch

=T 0r 7 is an cud-point of the interval (e, b) inside and at the ends of which
f1#) is continuous,

T 8ee footnote, p. 230,
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bow the question can he treated by Fejér's Arithmetic Means (of. § 101}, and
we shall prove the following theorem :

Let f{z), bounded or not, safisfy Dirichlets Conditions in the inferval { —m, ),
and lef it be continunus af a and b and in (g, B), where —= aand bzmw. Then
the Fourier's Series for Fl2) converges wniformly to fix) in any interval (¢ 4§,
& - §) conlained within (e, b).

Without loss of generality we may assume b —a = m, for & greater interval
could be treated as the sum of two such intervals.

b
Let, 21m,,’:{ Flayda, N o
Ja . 2N
T, = Eb f(x) cos nw’ dx’ l 4 \ '
: =L
and —\ Jl&'y sin ag” &, \ :

Since f{z) is continuous at @ and & and in {«, b}, it is alsyg B\mded in (s, b},
and we can use the Corollary to Fejér's Theoremr (§ 101) anfl assert that the
sequence of Arithmetic Means for the series \.

7

ao’-i-Z(a ’ cos nic + by, sm n;}}

converges uniformly to fizlin fMulibr ary Sor g in

Also |, cos nx+ by, sin + np:J e, + b,
But f{x) iz hounded in (¢, &) and sa.t;isﬁe;f'_[]irichlet’s Conditions therein.
Thus we can write f (x)'— ‘ — Gx),

whero Fi#) and () are bf)unde‘&, posmve and monotonic increasing functions

in (a, b). It follows thaf\u@ can apply the Sccond Theorem of Mean V alue
to tho integrals

) B
{f~ ') O nat da, ) ool d,
.a\ 7 sin
and we deduce é}\onee that (a,2+0 ’2)’} s Kin,
where K l\o}ne positive number depending on the upper bound of |/ (=)
in (a, ), {
Thon e know, from Theorem JT, Cor. 1T of § 102, that the serics
~\ 3
\”\; oy - E(aﬂ' cos u I-b, " sin #x)
1
converges nniformly to f{x) in {a, b}.

Lot us now snppose z to be any point in the interval (a + 8, b — &) lying within
the interval («, b).

With the wsual notation

L
27, :‘ Flayds,
ir
qmﬂ:\ S’y cos mz’ dw’, ]
o =

wh,= r Six'y simonx’ da’ J
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It follows, as in § 103, that

(e, — ") - ?{[’aﬂ —ay") cos nx +(b, —b,") sin nx}

is equal fo
i T g L s
TR —a) BN Tiath -2 g o ?
flz) heing detined outside the interval { — 1, 7) by the equation
Fle+2my=fi=). .
Now f{x} is supposed to have not more than a finite number of points (Sa) )
of infinite discontinuity in { — =, =}, and j 2\ \
We can therefore take intervals 2y, 2v,, . 2+, enclosing theae pomts the

intervals beingg so small that (‘~."

]2?} | £ | dx’ < 2e5in 48, [r=L2, "‘m\

¢ being any given positive number.

Consider the integral PN
g sin(mN)‘cé
o2 ™ e

% {x —u}
#, as already stated, being a peint m\"(&f—?ﬂ@d brajjlibrary.org.in
Az @ passes from {{z—a) to }r, we' may meet some or afl of the m points
of discontinuity of the given fungtljo'ri'in (z—2a). Let these be taken as the
centres of the corrcsponding inteevals vy, Yo - Yor
Also the mmallest value of{ a) is 8.

5 Sln%w+1)a 1 -
Thus \ fx QK\ o ‘<S'_HID%SLP|I(‘C 2a) | da
"’ l [ ' LF
S i 42;‘55_\% [/} dx
Y .

Wher\t:h”e\e intervals, such of them as oceur, have been cut out, the integral

sin (2n + Do
N -2 ———da
AN [ 2™

“’*H at most consist of {m +1) separate integrals (I}, fr=1, 2, ...m+1]
In each of thesc integrals {1,) we ean take f{x - 2a) s the d]iferem‘e of two
bounded, positive and monofonic increasing functions

Flx—2¢)  and @z -2a).

Then, confining our attention to (I}, we see that

ain (2n -+ ]]ada
sin g ]

-
‘:H(F - (B{cosec $3— {cosec 18 ~ cosec o} sin (25 + Na da

=Vl 15+ + 4
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where J, =cosec %8\ Fsin (2n + Da dis,

J = cosee éﬁ\ G sin (2n + 1)a da,

gy :\ T {coses 18 — cosec o} sin (2 - L)a du,

J4=\ ¢ {cosen 18 — cosee ) sin (2 4+ 1) da.

But we can apply the Sccond Theorem of Mean Value to eacii of theseintegrals,
since the factor in each integrand which multiplies sin (2s + 1)« is monotopic.
¢\
1t follows that N
N
where K iz some positive number independent of n and 2, anghdepending

only on the values of f(x) in { -7, =), when the intervals 2}-.]:}?272,: . have
been removed from that interval.

L 1] <--2-:é1 cosee §9,

m\\.
Thug * \/
[t sin (2n 4+ Da [+ WR .
L{x_u)f(x - Zu) sin-ﬂ—da ‘ <E‘{J-’,‘}\)%-'ill 5 | me

< (2 De,
when (2n+ 1)e == K cosec 5. N

Since this choice of mi&wgdw}(}gﬁ-ﬁ&x@ﬁgm]tegml convorges uniformly
0 zero a8 n—2% , when z lies in the intergalfe+8, b - 8).
Similarly we find that A\

any
N

[k Ssin (20 +
\ Sz %) sin (2n + lja du

JRih - 8in
- N - [} . -
converges uniformly to zero wheh ¥ lics in this interval.
Thus the series ¢e\J

(ag — %f) y

e, —a,) cosax+ (b, - b, sin nz)
oy N/ 1
converges uniformly’to zero in (¢ + 8, b — 8},
But we havcx:,s{lQWn that the series
) ’\\Zw:‘.’ ay -+ ?(aﬂ' cos nx 4 b, sin na)

- converges uniformly to f(x} in (a, &),

Sx(me the sum of two uniformly convergent scries converges uniformly, we
\"EB?.#ha.t

@+ Ell(aﬂ cos 7 + by, sin mx)
converges uniformly to f{x) in (a +8, & - §).

%

109. Differentiation and Integration of Fourier's Series.

Differentsation. Trom the worked out examples in §§ 95-97 it is clear that
term by term differentiation of Fourier's Series is not in general P"mﬁsaible’
as the terms do not tend to zero sufliciently gqaickly.

This difficulty dees not arise in the application of Fourier's Series to the

o ) A J*e
solution of the Equation of Conduction of Heat—often written a8 %1; o

— K,:l'_z'
T .
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Here * the tormas in the appropriste serics are multiplied by a factor {e.g.
g-oemiat) which may be called a convergency factor, as it increases the rapidity
of the convergence of the series, and allows term by term differentiation both
with respect to @ and f.

Integration,  Again we have seen that under certain conditions the Fourier's
Series for /{x} converges uniformly to f(@) in the interior of any interval in
which the function iz continuous.  In this caze we know that we may integrate”
ihe gertes Lterm by term within such an interval, and equate the result to the
integral of T} between the same limits.  Also this operation can be Tepeatd\
any number of tines {§ 70, 1) .

But such a simple serics as the Bine Reries for unity in 0 < @ < =, namely

47 . i. | e ’
1 —.—.r(\sm Tk g sin 3r.~:+5 sin 8z + ) O<a<r N
ie not uniformiy convergzent in the interval 02 222w, as itg‘éﬁ?n iz discon-
tinuous al @ —0 @l x—w. &P

However it can be inlegrated term by term bct-wcen'ftke limits O and z,
where = (£, §70. 2).  This can be verified at onceby‘comyparing the Cosine
Serics for v in (0, =), nanely }

v

A
e 4licosx+-313 o8 3‘”"'512 coa'5:g,\l::..), =g m

2
wi.th the series obtained ffom the flb&},’\%&%'rilt_g%rflhg?‘gl_ P—— _

Int the days wlen Fouricr's Series weleMirst nsed, ter ﬁy%erm integration

was employed withoul any hesii.at;in:ir,’.zbbth in the cage of the Fourier’s Series
for f{x), anid when the series congtlered was that obtaived by muitiplying the
Fourier's eries term by tcrm~byﬁnothcr function. Later it was seen that
sueh a step required justifightion. Hence the importance attached to the
guestion of thwe uniform depkergence of Fourier's Seties in cortain eases, Bt
the theorem that follo% shows that the presence or absence of uniformity of
convergence has !gtt]e or no hesring on the suhje;:t. of the integration of the
Fourier's Seriedy; \alﬁzi that, even the convergence of the series, is of secondary
interest. a\)
¢ -

Let fizt8 Bounded and integrable in ( — =, =), or, if unbounded, let ‘ Hf (6}dz
be ubegta}}tdy convergent,  Then, whether the Fourier's Series corresponding fo
Sisi ety e

PR \ fry + [t 008 2 + b, 8i0 ) 4 (&g cos 224+ By sin 2ry+ .y

\ \wm'e?'ges or 1o,

ik @w ]
" Ala)demagfasm) + 3 (3, sin o +b, (con o - cos ma),
.- 1

tohen R O

Let y=Fle)-|" f)de-ap.

Then F{‘n‘}zr f(x)dx_aun-:a.nfr, sinpe 2ray= iﬁf(x)dx'

md  F(— )~ R,

——

*Carslaw, Conduction of Heat (2nd ed., 1921}, Ch. TV. § 30.
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Also F{x)is continuous in { —, =) (§49).

And it i of bounded variation in this interval; for, wilh the notation of
§36.2,
n= 1 | [ rr
%- |,yf+1_y1‘] ‘ f(a}d'.b
I

Hence, by § 95, the ]'-‘ourler

35 { Ml aadz =) | pela.

Series for F & .), which we write as
Ag+(A, cos x + By sinz)+{d, cos 2x - By sin 2a] ...

has #{z) for its sum at every point of —r Zx =, N
4 N &
Also, when 2 1, _|| ) cos nx do A
1 = o
=——\ F'lz)sin nx de R
T - N
1 D
=- 57—_\ { F(2) --ay) sin ax do* R
1':1 a, >’
Similarly Bn:;-_\ | Fa)sinng a’.x‘:ﬁ’-}
Therefore F(x) ﬁr d m{f[flz?lg%‘l% !5 s I
But since F{r)=F( —-'r}_ao-r we haV’e v
agr —A,+ X z sl (luY Rm nw -, coa nw).
Hence, on subtraction, m\\
\x Jizydz =y HT) §4\ {a, sin 2z 4 b{cos we - cos nrl), - T SREET
It also follows t-hat, ,when — Ty T

X
H 2f dx_a;fxz—x IES ). (re lsim w2y —sin wxy) + bfcos sy, — 0% nixy))-

Agmn s»\ T ) is continnons in —m -z r-o 7 and Fiw)=F( - %), we know

that thg Knmer s Beries for Fe) converges umfmmly to Flx ‘J in this interval.

Hamb term by term integration of f{x) eun be repeated any number of
ity

) 3
\ 110, Parseval's Theorem on Fourier's Constants.
In this secticon, as usua!,
"

Bty + ?(a.,. cos rr+ b, sin ra,

1
Tn = " {30+31 L +sn—1}’
and a4, @y, ... by, ... are Fourier's Constants for the function fix).

*1t is nssumed that the rule for integration by parts can be applied, and that
Fila) = [z} - a,.

This makes the condition attached to ftx) less general than in the
siatement of the theorem.  For another proof, sce §110 I"
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We shall prove that under certain conditions
1 . o w0
| P de=tag+ B a0,
a result usually called Iarseval's Theorem.*
L Let f{x) be bounded and integrable in ( ~r, x), or, if unbounded, let
|, e de
he convergent. )

Then Zof4 (2,0 + b, = i" [ )P e, A
I Tlow

U v -srae=" prentae-2]’ sesde+(T sraa Oy
tr i—r J—r A\ N
Substitute for 5, on the right-hand side, and we have at once | W

7, L@ s da=T LG de 2oz + 3ot bi)

P
i

T[é;‘;‘l! + %(“rg +5:4]

It follows that \ N

e R {f(x)]‘dx%mz $at b,
Thus 2a,° ""S‘(“r +5 %Wwébréﬁiﬁhﬁh‘y ergirn: (1)
And 21,2 +s~ (@y +b,,,2)* \ LA AL coverrerrerererenn(2)

3

But if this Fourier's %orms had converged uniformly to the continuous
function fiz), we could hay s\multlplled both sides of the equation
{ x.’a,o-{—(al cosx -+ by sinz)+...
by f{x), and, m"t‘g'mtmg term by term, we would have cbtained
o ,,f [
2O o L de=ta+ Sland+00)
in this caze. ’\

We PQ:;}:& o prove that this equality holds when the only condition
attachethio f{z} is that it is bounded and integrable in (—ur, o )

TInZet f(x) be bounded and integrable in { —7, 7}
R
Q i \ Pl do==2a,! +z(aﬂ +h).
o

\:

Bince

l ‘ {:r)(i +2zcosr{x — )y d,

*If the Lebwgue Integml is used, the following theorem also holds :
Auy trigonometrical series
@y + (@) cod T+ &y Bin 2) -+ {ay cos 2a:+b sin 2@) +..

for whieh, i {8, = b,?) converges is the Fourier's Series of & fmac#wn whose square ts

integrable (L Yyin { -,
This is kaown as the Riesz-Fischer Theorem.
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we have, as in § 101,
1
=g | @)

B

gin? dnfa —x) o

gin? } (.v )

Also we know that
r sin? § n(,c - ) I

= {a 25
Vw0 b TT) =2aw {cf, p. 256}

Thotcfore o, ~f(2) =5~ r [/} —f(e)] S:;nf{’“ 5 L, e {B)
and o =fE I EM—m, (4‘}
where M, m are the upper and lower bounds of fiz) in ( —=, 7} und = ig :m}
point in this interval. N

\
Now let e and « be any arbitrary positive numbers.

We kmow from § 42, 111, that there is a mode of division of fas 'r 1') nto a
finite number of partial intervals such that the sum of these 1;4&@; als for which
the oscillation of f{x) is greater than or equal to « is lessdhanse.

Lot & denote the intervals in this mode of division f% whiich the oscillation
i greater than or equal to «, and § the other intorvals N

Cut off from the intervals of § at each of theix (m\ds a part, so that the sum

of these segments cut off is less than e A
Let &” denote the segmpnt, W'&Bﬁaﬁﬁ‘ﬂl&aﬁ?‘%&%'fﬁ parts of & which remain.
Then |7 fra-sarde={3{ 4232 firw s o
Jon 7l (gle 3 la

where, by this notation, we mean thitt the integrals are taken rospectively over
the intervals of &, 8” and A.

Now let (@, b) be one of the\ntcrvals of 8, and (v, b} the corresponding
interval of §". &™

Alsg let x be a pmnt of (a’, b').

Then from (3}, y

trn—f(r)‘emwu ( N )[f(x) —flzx }]Smn—%(;—;dx’.m.,.{ﬁ)

Taking t&a&e three integrals separately, we have
sinfdn{s’—2) 1 M-m(n . o
IEFEWE LAa - M=) SR i —7) da’ | < _2.%;.5_” cosect } (&' - x)dx
S X
n’

where K is a positive constant depending upon the position of (e, &) and (', &),
Bimilarly we find that

|'25§.-.‘b ) -l )]E‘.‘li’iix'_“}dz,] M [

At Lw —%) e _(b cosec? k(x" — x)d’

<
n
where it is clear that we may take the same value for K in both, and replace it
later by any larger value we plesse.
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¥ Finally
P - sin® jn{z —«), 1 & r s dnie — ),
T b O T Gy oy O | <3z |, S
K [* sin®fn(z’ —x)d ,
Zmrs . 802 L (2’ — )
< K
Thus, {rom (6,
- K
o ~F()] ;—._.(K + EE) (7\}
But the sum of the intervals of & does not exceed 27, \
"Therefore in {3}, we have K ¢ o
B s \\ 3
ZR’[rrﬂhf(x)]zdx“-_—27r(x+2¥) v ot (8)
& e § (‘sf’
Also S [ o S P A (B, D {9}
& 18 »\\
by (4], sinee the sum of the intervals 8” is less than &NV
And }:\ [ _f(x)]smge(ﬁf:;»})ﬁ, rrvereree i neeaena(10)
aly \" -
for a similar reasoun, 9
It follows from (5) and (8), (9), (10{{@'&%1 aulibrary.org in
lim (7 [ag S ADER=0, worvercririsnrcnconnen( 1)
s T N

™Y . _
sines « and ¢ are arbilrary positiys numbers, which can be chosen as small as
we pleasa.

\«
But u-\\awq- (nﬂ )(a, oogrx+ by sin +x).

Therefore, as 111 (’L}, we have

Al fihpaem! [ ipds -[24'S (5 Jar o
| \\i\" {2 e ae-tzassS 40}
;\,v +7}:2:1r*(arﬂ+b,2). e (12)

But we know from (1) that
r n—1 |
L™ iy de—[2ag+ 3 @210
w g 1
Therefore from (11) and {12}, we see that, under the conditiony stated in the
theorem,

[ [f x)]s d= 2‘-105 f—Z‘(ﬂr i'bfz)

1
7]

Also Tim (—, i r2{a’? +-b,2}):
NN LT
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Y11, Let flzy and g(x) be bounded and integrable in { -7, m) and a,, b, the

Fourier's Constants fur Fix, a,, B, the Fourier's Constants Jor g(x).
Then = \ Flxyglae)dz =2y, -+ 7(@“& +b,3.)
We have from (IF},

;T- \ _ : [fa) + gio) Pde =2, + g} + ?[(a-ﬂ +a 2, + B

1+ ® ,
and = (fa) - gl P =2y~ anf® + (@ — )+ by~ )
T 1
On subiraction, the vesult follows.
IV. We may put gix)=0in { — =, z,) and (z;, 7), where —7 = =y < L
Thus we have the following theorem ; \

Fet f() be bounded and infeqrable in ( =, =) and glx) be boundeé wnd integ-
rable in (&, ©,) where — s 2y <X 17

Then from (IT1}, m\\

N

IM

N
¥,

rgf {r}gleide=ay [ﬁ gl)dz+ X ( \ g(x.) cos nw dx +{“’\z glx) sin na dx)
¥ 1
Tt will be seen that {IV) esta. bl1shes the poguibilit ¢ of ferm by term integra-
tion of the Fourier's Scries for the bounded and\Yutegrable function f{x}). and
also shows that this can be done when f{r) is multlphezd by another funetion
of the same ¢lass, W W dbraullbrary oerg.in

The argument in (I1) is taken from Hm:mtz proof of Parsev als Theorem.*

™
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absolutely convergent: but the integration under the sign towards the begmmng

of his demonstration is not discussed, The question of the removal of the restrie-

tions upon the functions involved is now of less interest, as these and other theorems

concerning Fourier's Constants are discussed with Lehesgue’s Tntegral instead of
Riemann's,



CHAPTER IX Q

O\
THE APPROXIMATION CURVES AND THE GLBBS”
PIHENOMENON IN FOURIER'S SERIES\ .7
‘!

111. We have seen in § 104 that, when flz) it\{'\};ibunded and
continuous, and otherwige satisfies Dirichiefs’ Conditions in
~m<lx<iw, f{z - 0) being equal to f(— = + 0),'gnd f'(»}) is bounded .
and otherwise satisfies Dirichlet’s Conditiéa¥ n the same interval,
the coeflieients in the Fourier’s Serieadoryf{«) are of the order 1/n?,
and the.sewe:ﬁ\: [E: umformljf COI{VWQ}?&E&%H&%{%?E%I‘] N

In this case the approximationsgiirves

Eh,()
in the interval — 7<x<7.ilt nearly comeide with
SO y=£w),
when # is talen lar o snough.

: AE an exampleptet’ f{z) be the odd function defined in { = 7, o)
asfollows: | gy~ —lr(r+4a), —wliaw-im
) =4, jrzeshm /
INT : Sl ?
N\& _}P(:T,‘):I;Tr(#—m), 3T EHEE 7 [
The@‘?ﬁ'ﬂer’s Series for f(x) in this case is the Sine Series 2
A\ : T RN i
N sing - g 8in 3 g SR BT — g
~L)

NJhieh is uniformly convergent in any interval.
m - -
The approximation curves

i -=5in «,
H=8ine - 2 sin 3z,

, 1. .
Y=BINE — g 51N 3z 55 51 92,

are given in Fig. 29, along with y=f(x), for the interval (0, =),
289
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and it will he scen how closely the last of these three approaches
the sum of the series right through the interval,

?f
T
i ; : il
H T A
S 7
(1)
N
oA\
NS ©
L 4 Ny
~\
P\ 4 Fic. 29,
. (" . .
)rg‘cun, legffw) be the corresponding even function :
.'\’\ f(m):z?u'(#—]“ﬂl], "‘71'15135._%71',
Y fe)= =020,
QY Iw=i
Jley =37 (r —2), =
' The Fourier’s Beries for f{x) in this case is the Cosine Series

%fi w-2 {2'12003 i ~|—;—'.zeos Gz +~]%:-,; cos LOwx + Sk
which is again uniformly convergent in any iaterval,
The approximation curves
y= 47" — Tcosdz,
=y57? 1} cos 2z ~ L cos 64,
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are given in Fig, 30, along with y=f(x), for the interval (0, =),
and again it will be seen how closely the sccond of these curves
approaches y— fizx) right through the interval.

e i I
FTH £ TH I tHH
v iz H T T
TR 1 H Hik
P e () .
- Bttty FILIEE il P
rsamsary: : T s 2 \
i H- i T H N\
EIE ¥ T £ \73
i T T i :ﬂx A
R ] H )
HHHHERTH ; 1] B \,
S Y
T
T
il HirH
= AEH = HE
fan
SRR (2)
M R Ed “HE-HH
- ; T
A R T H
3 Bl H
TR L L s
. TR 5
N A T .
S DT A DTS YOO RN

Troe s,

Tt will be woliced that in~both these examples for large values
of n the slope ol y:s{(w) nearly agrees with that of y—f{x),
except at the corngpsf eorresponding to z= L, where f'(2) is
discontinuous. Tl]ﬁ\\&'tﬂlhl lead us to expect that these series
may be differeptiattd term by term, as in fact is the case.

AS

112; Whéin the function f(z) iz given by the cquation

L N\

§ floy—=w, -—wm<i<m,
the gorresponding Fourier's Series is the Sine Series
'\ -

i

o

[sin & — % 8in 2z +§ sin 3z — ...}

L

The sum of this series is = for all values in the open interval
—w<&x<w, and it I3 zero when 2=t

This series converges uniformly in any interval {—# +3, =—8&)
contained within (—-‘TI', ) (cf. § 107), and in auch an interval, by
taking n large enough, we can make the approximation curves
oscillate about ¥ a8 closely as we please.

Until recent years it was wrongly believed that, for large values
of n, each approximation eurve passed at a steep gradient from the
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point (— =, 0) to a point near { -, — ), and then oscillated about
y=x till # approached the value =, when the curve passed at a
steep gradient from a point near (=, ) to (v, 0). And to those
who did not properly understand what is meant by the sum of an
infinite series, the difference between the approximaticn curves

y:S-n(w):
for large values of n, and the curve y =lim s,(x) offeved consider-
able difficulty. e
In Fig. 31, the line y== and the curve A\

. . . . . - "N
y=2(sin # — L sln 2x + 4§ sin 3z — } sin 4 +] sin 5z, \

are drawn, and the diagram might seem to confirm €8 above

Fra. 31.

view of the matter—namely, that there will be a stecp descent
near one end of the line, from the point (- 7, 0) o near the point
{ =, =), and a corresponding steep descent near the other end of
the_ lir}c. But it must be remembered that the convergence of this
series is slow, and that # =5 would not count as a large value of #.
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113, In 1899 Gibbs, in a letter to Nature,* pointed out that
the approximation curves for this series do, in fact, behave in
quite a different way at the points of discontinuity 4 in the
sum. He stated, In effect, that the curve y=s, (2), for large
values of », falls from the point (-4, 0) at a steep gradient to a
sin @

peint very nearly at a depth ZI dx below the axis of , then

oscillates above and below y=zx close to this line until z approaches

7, when it ialls from a point very nearly at a height 2J' Smxdx

above the axiz of ¢ at a steep gradient to (=, 0).  \

The approximation curves, for large values of n, would thus in
(-, 7} approach closely to the line y=2x of Fig 32 with the lines
parallel to the axis of y ag drawn in that fignl )

" n‘_y.org.in

K | ¥
O
His ta\kemem was not accompanied by any proof. Though
the refnamdor of the correspondence, of which his Jetter formed
&llat‘t attracted considerable attention, this remarkable observa-
~\bou passed practically unnoticed for several years, In 1906
Bocher returned to the subject in a memoir f on Fourier’s Series,
and greatly extended (libbs’s result. Hé showed, among other
things, that the phenomenon which Gibbs had observed in the
case of this particular Fourier’s Reries holds in general at ordinary
‘pointa of discontinuity. To quote his own words:}
—_——
*Nature, 59 (1800), 606.
tdunals of Math., (25, 7 (1908), 81.
Hoe. cit., p. 131.

T, 32,
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If f{z) has the period 27 and in any finite interval has wo discon-
tinuities other than o fintte number of finite jusnps, and if i has o
derivative which in any finite interval has no discontinuities other
than a finite number of finile discontinwities, thei s n becomes
infinite the approximation curve y==s5, (&) epproaches waiformly the
continuous curve made up of

(2) the discontinuous curve y=F{x) -

(b) an infinile number of straight lines of fonite lengths parvallel
to the axis of y and passing through the pownts ay, a,, ... on tkﬂ awed
of « where the discontinuities of f(z) occur. I a is any ong qf Dthese

points, the line in question extends between the two z,am.‘r&s whose

ordinales are '\\.
DP DP N0
fla—0) +—1, fla+0)~ —Tl \
O
where D 1s the magmtude of the Jump in f (x)\nxl\a * nid

S J

dao== — 0&28] 1.
d'bra%hbraly arg.in

* Binx
P =

™

_— T o ‘/f""'_'__‘“'hq__
o " it

Il
' - a,aw

\O" T

1d. 83,

This theorem is illustrated in Fig. 33, where the amounts of
the jumps at a,, @, are respectively negative and positive. Both
Gibbs and Bocher thought they were deseribing properties previ-
ously unknown. However, in 1848, Wilbraham 4 had noticed its

*ie D=f(a+0)—f{z -0}
1Camb. and Dublin Math. Journal, 3 {18483, 198,
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yeeurzence in the approximation eurves for the series

Sy R a L ts@r-T)e
20 and (==

And in 1874 du Bois Reymond * would have reached the same
conclusion, both for Fourier’s Series and Integrals, had he not made
B B "E ]
a curious slin in dealing with the 1ntegra,lj. E%t dt, when n—so
1) A’
and &0 simoltaneously. In recent ycars a number of othie
writers have dealt with the matter, and the property in Fogtiet's
and other servies 1s now well known as the (ibbs Phenomendn$
114, 1. The series on which Bacher founded his @cﬁi’onstration
of this and otlier extensions of Gibbs’s theorem is \\
iR 2 3 8in 27 +% 8in 8z + W0
which, in the interval (0, 27) represents tb\s\hmction J{x) defined

as follows : FlOy=Ff@m) =0 &
Floy == -@%" 0<w<2r.
In this easze wwly dbraulibrary org.in
s () =sinz + = sjlitﬁx +... += 8ln #F
AN 7
£ 3T
= [ (ees @ +cos 2a +... +008 na)da
-i}\

(SN sin (v 4+
o sin(m e g, 1

\ e s Sinia
The propertiesnGf Lhe maxima and minima of s,(x) are not so
easy to obt{a.iai,i not are they so useful in the argument, as those of
\\ R (@)= H{n - z) — s.{(z)
O “sin {n +5)a da.

< _ppogfin
A\ 2021, sinia

=\ In his memoir Bocher dealt with the maxima and minima of

N\

) 3

*Math, 4 nurlen, T (1874), 241,

tCf. Ene. d. math. Wiss., BA. TT, TL IIL, 2, p. 1203. In addition to the papers
Toferred to on pp, 12034, the following may be named:

Weyl, Rend, Cire, Mat. Palermo, 29 (1910) and 30 (1910},

Cooke, Pros. London Math, Soc. (2) 22 (1928}, 17L.

Wilton, Journad fir Hath., 169 {14928), 144,

And a historical note by Caralaw, Bull, diner, Math. Sor., 31 (1925), 420.

{Gronwall diseussed the propetties of s,{z) for this scries, and deduced the Gibbs

henomenon for the first wave, nnd some other results. Cf. Mnth. Annalen, 72
(12).  Also Jackson, Read. Cire. Mat. Palermo, 32 (1911).
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R.(x), and ke called attention more than once to the fact that
the height of a wave from the curve y=f(x) was measured paralel
to the axis of y. This point has been lost sight of in some exposi-
tions of his work.

114; 2. However the series
2(sin x + 1 sin 3z + L sin B +...)

has certain advantages as an approach to the Gibbs Phenomenon.

This is the Fourier’s Series for f(x), when O\
f@)=~ir for —w<e<0 ) ' o
b do <wer | o\
and f(=m)=f (=) =f0)=0. D
sin (27 — 1)3: \Y%
Let Su(x)=2 Z — T RN
sn:g%m:
Then ﬂ(m) 2 2 cos (27 — l)x: N
and 8o) 2 ﬂ““%ﬁ“?" orgin (1)
" g }.}; .........................
sm 2?1& .
Alse sa(x) — I vl = Lsm 2%(1( S a)d :

Thus s,{x) - r Smaid& j 8in 2ha na(B‘ st ..}da.

[H
But x cosec z cgnj;pnually inereases from 1 to 3= as z passes

¢ e
from 0 to ;l;-.nx-,\ay,a 0< —5 < When O<x=lax.
& 3t
U 20 '
Thus "%” 8, () — " sin g da [ E [ z du

Ny T e Sy
) 24r when 0<z= g7

\Ii we take the arbitrary positive number ¢, there is a corre-

sponding positive number #, such that

sn(x)—r 555* da[|<e when 0 Z @7, overeeenns @)
and this holds for all values of n,

Thus, if we choose n so large that 21< #, we have

(g [, Tt ae

o
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that is :sn +]r3m“d l ]<€

This shows that the approzimation curves y=s,(x) for this series
rise above tﬁe SUH @Zn the right-hand neighbourhood of the origin by

nearly J. g rfa I when n is sufficiently large.
The integral J — - ¥ @z is known to be approximately — 0-2811.*,\
Or, we may put the matter as follaws : N
¢
et y=| "% da=pta). o

The turning points of this curve occur when x= ~?’7r, Ythe 0dd
multiples of » give maximum ordinates; the BV&.[l\ﬁllllthles give

minimum ordinates.

SiIt o
The maxima continually decrease frony ﬁ—m—da towazrds ix

when g—co ,

na
The minima continually mcma@s@ é%ljbr:: . Oiig_igowards 1x

when g—o0 .
If the abiscissae of this curve~a1’e reduced in the ratio 1 :2n, we

obtain the curve
Q j 20 in g da,

and, when » ine reas‘ea\ the tu.rmng points of the curve come closer
and closer to z= 0 the first (and largest) ordinate being always at

&= 2 » and g\hplght [ sina da:g_ U.” Sn;ada .

By (&)\ the curve J—us,(:r) in the neighbourhood of the origin
Ty Blll
dlfie&rs by the arbitrarily small ¢ from the curve y= [ adﬂ-

...\ L

%, sin (2 — 1)
N\ Tue TriGoONOMETRICAL SUM 2 2, "9 77"
115, The discussion in § 114. 2 estahhshes the existence of the
9n— 1)z
Gibbs Phenomenon in the Fourier’s Series 233 sin é; )“: and,
l

as we shall see in § 117, it can at once be deduced that the pheno-
Mmenon will appear at w==a in the approximation curves for the

-—

*Cf. Bécher, loc. cif., p. 124.
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Fourier's Series for any function f{r) with an ordinary discon-
tinuity at w =g, i f(x) satisfies Dirichiet’s Conditions in { - =, 7).
But the approximation curvea

y= 2(%111:1:—1—}}3111%4- ..-_?1__ sm(Zn—])J}-—\ ()

are worth a more detailed examination, for it will he found that
from the properties of their turning points and their graphs, the
Gibbs Phenomenon is exhibited in the cleavest possibie mannerA

In this section we proceed to obtain the properties of the ;ﬂa:{?ﬁm

X i \wm* (2 *1)
and minima of these approximation curves y—2> ~“_‘—?i'—l
when O<z<x, X

_ , . LY
L. Since, for any integer m, \/

sin (2m — 1)(3m +2') =sin (2m — 1)(5xs 2),

it follows from the series that s (x) 4s sy'}??m.-\éé-?'icm'- about r=1%w,
and when £=0 and = if is zero. O

wwrw.dbr auhbral,y org in
II. When 0<w<Cw, 8,(x) is positites

From (I} we need only conwlder O<x 23w, We have, by
§114. 2 (1) i
& Inx
s.(r)= j Sl;ljna \ 1 sin o da, 0=z i
° K\ 0 sz .

The denomma:ﬁqx} in the integrand is positive and coutinually
increases in ﬂi&’interval of integration. By considering the

successwe@aw es in the graph of smacobec thc lust ol which

may Gr~may not be completed, it iz clear tha,t the integral is
positive.

TI1. The turning points of y=s,(z) are given by

™ S 9 —1 )
[5‘51—9?1, Ea=go s Lona =g = (mazima),
]x =T _2= n—1 .
2T T s By T o T (sminima).

*8§ 115-117 are founded on a paper by the author in the dmerican Journal of
Mathematics, 39 (1917}, 185. The computations for Fig. 34 and Fig. 27 were
| made by Mr. F. . Brown, B.Se.
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We have

. r;ii_l}ﬁna e, and d_y:H_Sil.l g.nwl
Jy B de ~ sing
The result follows at nuee.
IV. As we proceed from £=0 Lo x=Lx, the heights of the maxima
contimrally dimivish, and the heights of the minima confinmnally
inerease, n beinyg hept fixed.

Y O
e
S AT B AT

R it Ty AR

FEA AT AN
g i ol 17 il e 7 e i
A Y D N

1 Ul : ___:[_*I 1L _L FE R T _%%3{_¥_€
i [T : 1[0 WAL AT T
F S MENASEMA ENENSMRSANMARRENSguELIE
w__’..__f..jl .___r._'__ __:J-.: _[_;]:_:_ ,__hi_|_ ,_’_,;.\_.P_h! _...[T_h,_.\,__f._

AL T 0 Y A A L
i 7’_4 ___[_‘___f_l_ ey | "l.x ; '___1 ] | _l__

I S I A ' ol 1T
A L Lb“”ﬁ’faf?f??*_?f
T

: R = 1 I
A T T A L i T ls _?Z[_I
i VP EE T ER T A

Thelcurve y=g,(x), when n=46.

\\ - Fiz, 81,

Consider twosptensecutive maxima in the interval O<<z = I,
AS
Dy 1 2m +1 . e -
Nainel - \ A il 8 eger
¥, 8, (’\qn ,.) and s“( o 'rrj, . being a positive intege

:"\§~ -
less thf-@n equal to 4(n—1). We have

N s (2-}}1 -1 \] ¢ {,-gm +1 ) 1 -I‘(Em_l}"r sin o du
P - — e | = e == g
) PNTgn T T T g T T T @l o @
\ \ - B3I 2}1

1 [ [2m= a7 12m 17 gin o
- 2_!1! J-{'Zm— 1= t-’]n‘; do +.Lm:r ___ dal

{ "sin g sin 5
The denominater in both integrands is positive and 16 con-
binually increases in the interval (2m—1)7 = a = (2m+1)m; also
the numerator in the first is continually negative and in the second
tontinually positive, the absolute values for elements at equal

distanceg from (2m - 1}7 and 2ms being the same.
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Thus the result follows. Similarly for the minima, we have to
examine the sign of
C(mol N D
6"( H W) fa ")’
where m is a positive integer less than or eqnal to ia.

V. The first maxinuem to the right of =0 15 ot ;,;:_01? and s
EQT

height continually diminishes as n dincreases.  When n lends id
nfinily, ws limit 1

| O\
j ﬂlb . .l\ ‘
a * ‘:’. ;
iy : i
| . i L]t e —
20 ' XD
20 =] N\ Ll
] - : s e v ol I
u?; T \/& L hrE \/l'ffgk T 7
— R R P P e Y 7
Ot I N ZN R
e LY T N
IIJIL! S0 e/ A SAVGA s L A N LN O
/ z : T e R
S A N
f} il N i
@3- !’ "n:‘ | \\ !
T o ' -
= | R
or L— %
72 {}i\‘, HO ; Jats i 1o _»E_
¢The/varves y==5,,(2), when =1, 2, 3, 4, & and 6.
\,\ ™ Fia. 35,
We have
w\: ;\;. ) (‘T.I')__ 21%31112”&53& ]. fﬂn cosec dI
Q7 lgi)=], Tmu 1a=g; ) finacose du
Thus 1) - '—T 5
- fa (2n Snt1 (2n +2>

" 1 1 « )
=] sing 5=
.\.0 (2 eoseo 2n In+2 O 1o du
Since «fsin « continually increases from 1 to o, as o passes

from 0 to 7, it is clear that in the interval with whlch we have
fo deal

1 a
= Coset —
% 2n In 43 008 g >0

Q"
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ki
Thus %n (2%) Sni1 ( (n+]))>0'
But, from (I1), s,{z) is positive when 0<z<7.

H follows that s, (2 ) tends to a limit as n tends to infinity.
The value of this imit can be obtained by the method used by

Bocher for thc integral J m—;}:{i da* But it is readily~
pAL
obtained from the definition of the Definite Integral. A
(TN _gf T2 gy ™ | 20 g O AN\
For ”‘21) 2(2n>l Sn2n g s g N '.'"
+ 2n sinzn L.
( - 1) 2?%\\
h . /singnd
__2 (‘51_1'1_?& 5 k)
iyt ) n ;‘( N
Therefore \
hm sl ;' 2_[ ?’Hlffdm Tsin s_l__nxd .

WW Udb%auhbla & 01g in
V1. The reqult obtained in (V} for the fixst wave is a special
case of the following : ~

s"

_2r— :
The v muximum to t}w reght of x=0 18 af Ty =" — ‘:lr, and

i3 height conti nuall@nmaskes as n increases, v betng kept constant.
When n tends to mﬁ s lemat 15

Zr—Lmgin o
A& r sz g,
o x

?

which s gr(ci}r than L.
Tke r%mmmum to the right of £=0 1s al Ty, = *rr, and its height
w”@““”y wncreases s n increases, v being kepﬁ constant. When

\ﬂ'tends {o ???ﬁnftj’ wts Trit 18 I sin d:ll, whach 8 less than %Tr.

To prove these theorems we cons1der firgt the integral

1 T\ ge
2?’} 2n+200330 I +2) »
™ being a positive integer less than or equal to 2n—1, o that

ww 1
J. 21T cosed ;
0 \3n

1 a 3 h . .
0‘<_¢3‘;}< 7 in the interval of integration.

*Awnals of Math., (2), 7 (1908), 124, Also Hobson, Theory of Funclions of o Real
Variable, 2 (3nd ed. > 1926}, 494.
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[eE. 1%
T 1 « l o o (l_ ey
Then Fla) =g GOSEC g — gy COSGE o 5 =
in this interval. (CL (V).)
Further,
o 1 2 s P cosect t
Flla)= {n 3 cos 5o—5 cose’ ;- 5 G COs 5 - COSLC" o

=a 2 cos ¢ cosec? ¢ — yr® cos r conec® /),
where ¢=af(2n +2) and +r—=af2n.

But d%r; (¢* cos ¢ cosec? ) O

= ~ h cosec? ¢ [ (1T cos ¢)% -2 cos o (g 8in ik ﬂ\‘

And the might-hand side of the eqnation will J?&‘ﬂu’n to be
negative, choosing the upper signs for 0-J¢ < {5 dnd the lower
for 52111-<g";<1r AY;

Therefore (2 cos ¢ cosec? ¢ diminishoes ag, tﬁmcmd\c% from G to .

It follows, from the cxpression for FYe), that #'(a)=>0, and
F(e) inercases with a jn they gpggxf.mla 9§¢ m—tg’gmtmn

The curve

".

y—sm:r( L cosee & L3 co ee = >
2 2n 2ntd 2n+2
thug consists of 2 succe‘a«m@n of waves of length =, alternately
above and below the Q &nd the absolute values of the ordinates
at points at the sa m\hbtance from the beginning of cach wave
continually i mcrcasa,

It follows t] b, ‘whcn i is equal t02,4,...,2n— 1) the integral

\ ‘slna(l coset — 1 cosec —
r 27 0% 3o~ T % +4J

is n@@iﬁtz’we ; and, when m is equal to 1, 3, ..., 2r— 1, this integral
is~positive. .
L
Returning to the maxima and minima, we have, for the r*
maximum to the right of x-=0,
$al@, 1}~ 8npr(2—1)
Ir — T K|
J|‘ 2 sip_Zr{a-ada J"f““} §in 2(n+1)a
g sin &

,  Op=lmm,

o gin a

__P]-()r Lir B ( 1 )d
== . 810 2 coseczﬂ 2 +2(‘OS€-‘C +2 €L

Thercfore, from the above argument, 8,(Ta,_1)>Spi1(Ear—1)-
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Algo for the #** minimum to the right of =0, wo have

=i 1 “ Y4
sultge) — $waalizr) 2 | S @ g coser 2n 5749 905 g g ) dat
and 8,(C2r) < Sns 1% )

By an argument similar to that et the close of (V) we have

: §
lim ¢,{c, )= r —led *

H="rin1

N\
Tt is clear that these limiting values are all greater than } A for
the maxima, and positive and less than i for the minima. , \"\
NS ¢
Tur (g PORNOMENON FOR THE SERIES.\ o
N
Qsina +3sin 3z +Lsinbe+..). ,

2N

116. From the Theorems I-VI of § 115 allsthe/features of the
Bibbs Phenomenon for the series AN
2sin o L oan B+ Losin Da + ..;).'\’ ~wZE T,
follow immediately, O
It is obvious that we need onLE“ﬁ%’a‘iHlﬁé’ltBﬁaiMﬁal"O x =,
and that a discontinnity ocenrg b z=0.
For large values of u, the eufve

&

mg Y = 8ulit),
where () — QI 5111 7\4\% sin 8 4 ... 45 nl—~ sin (20 - 1)“1:) rises ab
8 steep gra(hen}, .fmm the origin to its first maximum, which is
A S
very mear, pus-nbeve, the point (O,J. §";_?? d:n)(§ 115, V). The
g # 1]

ourve, théw, falis af steep gradient, without reaching the axis
of 2 ({5, 17}, to its first minimum, which is very near, but below,

<¢Iﬂé\1)}’iﬂf- (0, f_n ~1n * d":;;) (§115, VI). It then oscillates above
) 3 - i T

and below the line 41, the heights and (depths) of the waves
continually diminishing as we proceed from =0 to =%+ (§ 115,
IV): and from £—lx to z=1, the procedure is reversed, the
turve in the interval 0 z#:- being symmetrical about z=jx

{§115, Ty,
The highest (or lowest) point of the r* wave to the right of

—_—

* ¥or the values of Hm vin dz, se dnnals of Math,, (2), T (1908), 129.
oox
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z=0 will, for large values of », be at a point whose abscissa i3

2" {§ 115, I1I) and whose ordinate is very ncarly

[ *““d (§ 115, VI).
o

By increasing n the curve for ¢ =z = + can be brought as close
as we please to the lines

. N
fTsinz N
x=0, 0<y= dic, A\ ¢
0 ¢\
P\
O0<rm, Y=o > « W
2 A3
N
sz NS ¢
=t _..l. T dr ,\{
¥ ’
\\,
\\
. O
2 www.dbraulibrar y’o,rg in
Q)
o\
¢ o’\"}
b\ _
0 PN w
Fia. 36.

¢
We may st,gﬁe"these results more definitely as follows :
{) If e\ié;\ﬁhy positive number, as small as we please, there 13
a posiﬁ{émteger " such that
;{f‘:' |$7m —s,(%)| <e, When =)', eZ T =1
\;\.Tﬁs follows from the uniform convergence of the Fourier's
eries for f(z), as defined in the beginning of this section, in an
interval which does not include, either in its interior or at an end,
a discontinuity of f{z) {cf. § 107).

(ii} Bince the height of the first maximum to the right of x=0
tends from above to [ Sl%dm as # tends to infinity, there is &

R
positive integer +* such that

T sih @
0<8ﬂ(3fﬁ)wj —d:r<e, when n =",
= 0
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(iti) Let »"" be the integer next greater than ; Then the
£

abscissa of the first maximum to the right of =0, when r =",
ig less than e

1t follows from (i), (i) and (iii} that, if » is the greatest of the
positive integers +, ' and "/, the curve y=s,(r), when n=y,
behaves as follows:

It riscs at a St(‘cp gradlent from the arigin to its first maximyfn®

which iz above .[ — % 3z and within the rectangle O\
] N\ ¢
(<Ix<e, O<y<j —d:z: +e. G

After leaving this rectangle, in which there mayd Hex many oscilla-
tions about ¥ =4, it remains within the rectang"fe
eI T—¢€, FTW-— €<y<%7r\—1~e

Finally, it enbers the rectangle <!
T — €< L=<, 0<_]<‘j = dx +e,
and the procedure in the first reglo%bféaijeli)hélégteﬁ grein

Tur Gines PHENOMENON,jFOR FOURIER’S SERIES IN GENERAL.

117, 1, Tet f(z) be adfunction with an ordinary discontinuity
when -, which satigfies Dirichlet’s Conditions in the interval
- T m =, X\ -

Denote as ugial by f{a+0) and f(e—0) the values towards
which f(x) tcnds as % approaches ¢ from the right or left. It
will be cofiWenient to consider f{a +0) as greater than f(a ¢} in
the d&{ﬂfipmon of the curve, but this restriction is in no way
negqs's}try.

-

Pt e - a)=2 Sa L sin@r-1)z-a)

4 \™ T -1j
Then oz - a,): 1x, when a<eo<w-ta,
plz—a)=—Liw, when —r+a<lz<a,
‘1“’(+0): %T: (?5(_0):‘]2“7",
$(0)= 0 and ¢z)=¢e+2m)

*The cosine series

——rwbx—lcos.jx+] 08 B+ .. :I
T 3 b
which represents 0 in the mtm al 0 =5 @ < b and §r in the interval tr <z =

oan be treated in the same way as the series discussed in this article,
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Now pat
1 .
v (@)=f(w) - $fle +0) +fle -0 —— {fla + 0} = fla—0) ¢ (z - a),

and let f(z), when x=a, be defined as 3{/{z --0) +F{a - 0}

Then (@ +0)=yr{a—0)=1{¢)=0, and /- (x) is continuous at
L=,

The following distinet steps in the argument are nambered for
the sake of clearness :

(i) Since \r(z) is continuous at z=aand (2} =0, if ¢ is a positive
number, as small as we please, a number ?; exists such that(™

W@ <te when [o—al=y o\

If % is not originally less than ¢, we can chc;o»,c- ‘b].l{“’ part of 4
for our interval. )

{11) () can be expmded in a Fourier's ben{\s ¥ this serics being
uniformty convergent in an interval « = z ::2gf ©ontained within an

interval which includes neither within i, for as an end- point any
other discontinuity of f(x) thiin ¢ a (cf. § 108).

Let s,(0), dulx—a anc'id%’f (fr Lbar Orgumq of the terms up fo
and including those in sin wz arid cos nx in the Fourier’s Series
for f(z), p(x=a) and V(). Then e being the positive nomber
of (1), as small as we pleasQ{ there exists a positive integer ' sach
that

|m,!/“‘(r::3\— Yz <le, when niv,
the same v’ servingfot cvery = in a = % == f.

Alse [ @SN a(x) ~ (@) + i) <de jl =1e

in |2 -oa[= n\?\a<a-n<a<a +#<f, and » )

(iii) N:Q&lf # 1z even, the first maximum in ¢, (= —a) to the

E

rightbf"a:—a 18 at a,+ 5 and if » is odd, it is at et - ] In

‘B(ﬁﬁer case there exzsts a positive integer '’ such that fhP height
of the first maximum lies between

smx " sinx
dj LE e -
J, 5 e ma [V ae g e ~Fla oy When =

{iv} This first maximum will have its abscissa between o and

a 41, provided that %<n.

*1f f (=) satisfies Dirichlet’s Conditions, it is clear from the definition of ¢ {x — @}
that y (x} does o also.
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Let »'' be the first positive integer which satisfies this in-
equality.

(v) In the interval e+ =w=$, s,(z) converges uniformly
to f(z). Therefore a positive integer »™ exists such that, when
n Y,

|/ () = sal@) <,
the same " serving for every z in this interval. _ ~
Now, frem the equation defining (),

O — Fler O\
@)= 3/(a+0) 1~ 0) L CFOTO0y o) L loy

1t follows from (1)-(v) that if »is the fusf'positive inféger greater
than »’, y”, " and ", the curve y=s,{s}, “h\n n= v, in the
interval & = =, bphaves as follows:

When z—¢a, lt passes through a point whosg ord]nate is within
te of 1{f{e +0)4f{a-0}), and asccnds ,zit\a steep gradient to a

point w 1thm £ of

1/ (e +0) +f{a— 0} +ﬁfﬁ%0&ﬁ‘ﬁ€&mﬂif’bmdx

This may be written

f(a -0) — f( 'Hj) f(“ OJ‘ s_in_@dx

&x

E
P

\
and, from Bacher’ s\tghle, referrcd to in § 115, we have

j SN . 0981l
W

It then 08Q1 Iatps about y=£(x) till © reaches ¢ 47, the character
of the wg¥es being determined by the function ¢,(x —a), since the
term ;f)} only adds a quantity less than e to the ordinate.

Avd on passing bevond x—a +%, the eurve enters, and remalins

mwlfhm the strip of width 2« enclosing y=f(z) from z=¢ +7 to
Na=5.

‘On the other side of the point @ a similar set of eircumstances
can be established. .

Writing D'=Ff(a +6) —f(a — 0), the erest (or hollow) of the first
wave to the left and right of # = tends to a height

fla—-0)+ DT—PI Jla+0) oA,

where P:—[ ‘l‘.“.“’"]
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117. 2. The argument of the previcus section can be at once adapted to the
sase of summation by Arithmetic Means, and it will be seenr that, if we can
show that the Gibbs Phenomenon does not oceur in the approximation curves
for a single example of Fourier’s Series with this method of summation, it
rannot appesr in these curves for any function satisfying the conditions of
E 101, at 2 poing of ordinary discontinuity.*

It is, however, sasy to show that it does not ocuur in the curves y=u (x)
for the Fourier's Series corresponding to the function in § 114. 2,

Por this case, we have f(x)= - }r, when ~ v <<x <0, and f{z)=1r, when
0 < x <, A

But from § 101 we know that, when f{z) is bounded and integrablein [ — rr{??}" A

| ,osinfin{z’ -x) « N\
T g flz) 2 Gl ) dx A

o sin?}(z ~a) N

1#-1
(}'ﬂ(z) :?_E % &=

¥

.Y s &
and r M.Lx.ldx'.:QRTf- M\\

low sin?{x" —x)
Thus, for the function with which we are now concerned,
— ]. ™ ¢ Sinz é'ﬂ(ﬁ‘:‘ . ‘ F
lon@ =gz [ 10001 e e
) . . O

<t I S’ 4 (== 2)
w4nw H‘Blﬁé{lﬂfﬁ{{aF x}c;l"' in

é‘fn’. ' N ST

*

By § 115, TI, the sums s,,, when { << 2 ;m%;lai*e all positive.

It follows thut 0 < ¢,{7) < 4w, when :Q’<’ T

But we know by § 101 that «,{x) contverges uniformly to }« in any interva
wholly within (0, =), \’

Thus the Gibbs Phenomenqn'mdx)es not oecur when the Fourier's Series

2sin'g ¥ L sin 3r+ L sin Bx+...)

is summed hy Arithmegic‘Mea.ng.'}‘

In this example, bA& 114, 2 (1)

I i i’, sin 2ré
2\ ) 2 :
N 'r*"‘"-'l(‘:):m

It can ba shown that, as wo proceed from 0 to i, the ordinates of ths
maxi;n@cb’ntinually increase, and that the same holds of the minima.

TheJast maximum in 0 = 2 L, has the greatest ordinate for the whole
'\cﬁml, and when n—o, this tends to 3 from below.

The curve y=ug,4,{%) for n.=6 is given in Fig. 37, and it is interesting to
compare it with the curve of Fig. 34, which corresponds, with this notation, to
Y =8, ,{z) for n =6,

In the case of the ordinary sums the approximation curves y=s,{%) ars
brought within the shaded part of Fig. 38 by taking » large enough.

o sint

*For anvther ptoof sce § 4 of a paper by Fojérin Math. Annalen, 64 {1907), 273.

11t should be noticed that with the notation of this section Fap_y =2 2:_'2 ?iﬂ%fﬁ%m’
- _

and that s, | —s.,, since the coefficient of sin 2nx is zero.

Q.
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means the approximation curves
y = (%) are brought within the shaded part of Fig. 39 by taking n large

In the case of the arithmetic

enough.
|
rra. 35, o \‘:
« \J
5 @
s .,
£ A R R Y 7
N TN
N & \
N
\ R\ ;
O \
LA N
O N
0 f;:} N? ﬂ‘
O Fie. 38.
:’\M/
'S
SO
'"\5..\’;;
N

o

1Iq. 39,

The width of the shaded part in these diagrams may be taken as small us
we pleage.
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CHAPTER X NS
L\ |
FOURIER’S INTEGRALS A\
118, When the arbitrary function f(z) satisﬁés’ “Dirichlet’s
Conditions in the interval (~1, I}, we have seen 'm ’§ 98 that the l
|

sum of the sevies

215,_[! V' +3 ZJ. cos, (x —xyde’ (1

is equal to I[f(x+0)+f(z—0)] atl every point in — <zl

where f(;: 0 and j(x 0) exiuby, dmltﬂlﬁhﬁ‘ﬁblglﬁ A its sum
is $[f{-1+0) +f(i-0)], when_ tizese limits exist.
Correspondmcr results were ft)und for the series
[ Flehde' + KE cos [f(x yeos oz dz' weneen. (2)
of ‘R.?T ’
and fﬁ\s J‘f sin -—zr "5, e (3) |
In the interval I) I'

Fourier' %\ln’tegrals arc definite integrals which represent the
arbitraryfitriction in an unlimited interval. They are suggested,
but no’&stablished, by the forms these series appear to take as i
tendsito infinity.

S (It 15 taken targe enough, /i may be made as small as we please,
\ ind we may neglect the first term in the series (1), assuming that

r fle)dr is convergent. Then we may write
- @

J‘ fx)cos x—:c)da:

a8

f{x yeos Aa (2" — 2)dz’ +Aaj cos 2Aa(z’ —x)dx’ - ]

Where i\a =7/l

|
|
F

311
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Assuming that this sum has a lmit as {—, an assumption
which, of course, would have fo be defended H the proof were to
be regarded as in any way complete, its value would be

Ej dar Fla') cos a(z’ —z)da’,
mro — o
and it would follow that

o)
lrda". fla) cos a(e’ - z)da’ =} [ f{z +0) =f{z-0)},
o —m N
— o el , o \N
when these limits exist. O
In the same way we are led to the Cosine Integral .z&grf Sine
Integral corresponding to the Cosine Series and the Site\series :

) o M\\
%J darf(x’) cos az cos ax’ dx’ ‘ A
=3[ fle+0) +flx- 0)}&\

s
W

9 ] \ g O<e=ton,
'n'.[: da Bf(a:’) gin az sin ax’ dz’ N\ O
N MR (N

when these limits exist. SN

It must be remembered that the above argument is not a proof
of any of these results. All #hat it does is to suggest the possi-
bility of representing an arbitrary function f{x), given for all values
of z, or for all positive @lﬁes of #, by these integrals.

We shall now show}hat this representation is possible, pointing

out in our proof/ghe limitation the discussion imposes upon the
arbitrary iung{ibl\l.*

119, tt"gﬁfe’ arbitrary fundion f(x), cfeﬁned for all values of @,
satisfy Divichlet’s Conditions in any finile interval, and in addition

let I\ f(m) dz be absolutely convergent,
N\ Then
1

;L daﬁwf(x’) co8 a{s’ —x)de' =3[ flz +0) +f{z-0}],
at every point where flx +0) and f{x —0) exist.
Having fixed upon the value of z for which we wish to evaluate

the integral, we can choose a positive number « greater than &
such that f(z'} is hounded in the interval @=gz'=d, where b i

*Bee fovtnote, p. 230.
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arbitrary, and _[ | F(&')|dz" converges, since with our defipition of
('3

the infinite integral only a finite number of points of infinite dis-
continuity were admitted (§ 60},

it follows that .[ JEheosa(a' - ) dz"
&

converges nniformly for every «, so that this integral is a cofis
tinnons function of o (§§ 83, 84). N o
. O\
q " o~
Therefore j da_[ fleYeos af{x’ —x)ds exists. O

L 3
2%

Also, by § 85, AN 3
Lda_[af(x ycos ala’ ~z) d’ _I dxf PN coga(:z; —%)da
_,[f [ wi’c’

But R',' —rEa— -T>0 ].n. :1; == S] G.é We have chOSen G>m
w’w raulibrary.org.in

And _[ fl&' W’»B Qolwerges
Therelote j. L& )ldzc-' also converges.
a*"f\ s

It follows thag S J' fi Sm% '

converges unﬁcﬁ'm]y for every ¢.
Thus, po the arbitrary positive number e there corresponds a
pobltw\é"humbcr A >a, such that

\

'f.‘; ” f(m)smg( ) do’ l<le, when 4’ = A>a, oo (2)
X :..\ 3 | A af —
J the same A serving for every value of ¢.

- But we know from § 94 that

lim jj fi) Smg,(_m 2 gy
=lim 4 zf(u —i—x}

g—+hJdad -

udu

=0,
since f{ +x) satisfies Dirichlet’s Conditions in the interval
{¢~2, 4 —z), and both these numbers are positive.
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Thus we can choose the positive number @, so that

J-Af( )w)da,’| <}e, when ¢ (. ......... (3

@ & —x

It follows from (2) and (3) that
[ 22 =ay

<jetle=e,
i .']5 — i
when §=0).
Thus lim f( ySin gl =) g, o)
g-re - W
~ON
and from (1), I da f(:c') cosafz’ —z)dz"=0. ...... ,,\:,\;:' ....... {4)
0 ] NN
But, by § 87, N4

[: da'l.: &) cos a (@’ ~) d’ —_j .:zx*r f(x*@‘?fz (2 — ) do

sig{x’ —x) .,
www.dbr aﬂjbfa(r%}orggrf T )d

SN
Letting g—o0, we have \"\

I dol 5 (:v’)‘é)éfx (@' —2) &x':%r JE 0 e (5)
o [ Z‘\
when f(z +0) existd?;™
Adding (4) apd\b), we have

Q{“’:“I fl@Yeosal —a) da' =T f(@ +0), oivnirnn (6)
when ﬁ(ic }0) exists.
g};ﬂl'arly, under the given conditions,

I daf 1) cosale! -2 do' =T flo—0), oo (M)
when f(z - 0) exists.

Adding (6) and (7), we obtain Fourier's Integral in the form
1 ® = ’ r r B
;L daJ.mwf(x ) cos a (& - ) de’ = [ (5 +0) +f (& — 0)]

for every point in - w <®<{ew, where f(z+0) and f(z—0)
exist,
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120. More general conditions for £(x).* In this section we shall show that
Fourier's Integral formula holds if the conditions in any finite interval remain

as before, and the absolute convergence of the infinite integral r Fxx is

replaced by the following conditions :
For some pusiﬁivc wwmber and to the right of i1, flx') is bounded and mono-
tonic and lxm Fl'1=0; and for some negative number and to the left of if, f{x")

33 bouﬂded and monotonic mm’. lim j'(x’} =a{y, ~
Having fixed vpon the value Df % for which we wish to evaleate the iptegral,
we can choose a pr)bltlm number @ greater than x, such that f{z") 1s ‘bimﬁded
and monotonic when »’ =2 @ and lim f(z")=0.
Z—r; L 3

s
N

s,,.

7
|

Consider the integral f {x"} cos a{x’ — ) da’.
[=3

? ’\'.
By the Second Theorem Of Mean Value, "’\

5 Fla") cosalz’ ) d’ _j(A)\ cos (e’ ~) d nfEA" )[ cosala’ - z)de,

where g 4722 £ 4" \‘
s dl; y libr i
W rau i Jhs|
ra —x}
\ f yoos gy’ —xhde’ = ey \ \fé Y ﬁ‘y Sl cos u diu,
A7 a «m " @ latz—a
Therefore Qv \Y
4iﬂA”f{:ﬂ:a gp == 0.

\ f\x}cosa({’ ¥)dz’ ‘4
But we are given Lh&t}nﬂ_ Sl y=0.

It follows that.\ ': “ \ Flrycosa(z —a)ydx’
7N 4 S

is unjiorml};'bim;’ergent for @ = g,:>0, and this integral represents a con-
tinnous fufistion of a in « Z g,
Also{"by § 85,

\&L@;'}T S jeosals’ —e)de’ = im dz’ -[q Fle)eosals - r}da
t <[ ey EED B e

2 —x

But & — =@ _ x>0 in the interval #” =, since we.have chosen « greatcr
than .

And ) {x’)s——-—-miff'; D g, E fla )E-—-r—-'mq“ S

both converge,

S

*These extengions are due to Pringsheim. Cf, 3ath. Annaler, 68 (1910}, 367, and
TL{1911), 289, Reference should also be made to a paper by W, H. Young in Proc.
Royal Soc, Edindurgh, 31 {1911), 559.
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Therefore, from (1},

et
e 0
gﬂ smq{x I}d:c’—\ fle amr]n g -"':flu.’\r" 2}

Now consider the 1ntegral

From the Second Thcorem of Mean Value.

\A,f( smgo(x :c)dx,

_.x ;‘

4
3

=f{d’ )\E M_ dx’ + 4”)\ “sin f'iil}.(.": :_‘_-'_}._(f}}’g S

where g < A" == L= 47,

- =
Also \f sin gﬂ{.r: x) g \‘ln( s (
A4* x - fpfd—sd H. v
the limitz of the integral being both positive. \ “
(£ singy(x’
Theref S qelh T Cf £ 91
etore Sm‘ww:d b"[fﬁull.bl'a§|'y org { §91
A
And similariy l\ E-H-E—c—'(—-— ch:‘ \ < T,
£ 2~z N
Thus, from (3}, N
= ] » . PO
“ S ’%T)d. |] Do [ FLAY e {4}
It follows that \£\\ f( sm qo =% dx
is uniformiy convergﬁn}; for go = 10, and by § 84 it is continuous in this range.
"Thua x'\.": lim \‘ f(r}w[le O, e {5
g0

since the 1:%5;“1] vanishes when g, =0,
Alsq‘f}:um (2,
<\;~"' \ du\ Sf{z") cos a{x” ~x)dr’ = f( )ﬁ-lm—x?:—)dl"- e (6}

But we have already shown that the mte-gral on the right-hand side of {6}
iz uniformly convergent for ¢ 2= 0.

Proceeding as in § 1149, (2} and (3),* it follows that

lam§ S Sm‘“—‘f— x‘—”—dx'zo.

§—x

Thus, from (8), \: da Rﬂf(x’} cosa(x —xyda’ =0, ... {n

*Or we might use the Second Theorem of Mean Value as proved in § 58 for the
Infinite Integral,
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But we know from § 110 that
S:o‘h\z F(2') cos a(:c’~x)dz’=7—2rf(x+0), PRS-
when this limit exists.
Thus %\:da \: S5 cos ale” —a}d2’ =4 f(z+0), «oovven e, {9)

whoen this imit exists,

Similarly, under the giver conditions, we find that \
w0 T - N
1 [ da [ HaYeos ale’ )= fz—0) o LD (10)
J—= 4 .\ ~
when this limit exists. \J
Adding (3 and {10), our formula is proved for every pomt af, which f{z+ 0}
exiat, .\\.

121, Other conditions for £(x), We shall now Show" that Fourier's Integral
formuis also holds when the conditiens at :tl{\ﬁf the previous section are
replaced by the following: \ &

(1) For -some wosifive number and o, me‘r’igkt of o, and for some negafive

number and to the left of 41, 1 (:lrb)rﬁﬂ{}f&‘éf rgl% I]lcos (Ax" + ), where

#{z) i3 bounded gnd monotanw wn these inder nd has the limit zero
as & .00, '." 3
Alss, (IE) [ A1) 3o nt [ 9(—;,? dx’ converge.
T—=
We have shown 1n"§\}20 that when g(x') satisfies the conditions named
above jn {T), there\xli e a positive number a greater than z such that

:,,,‘ [ [ glz’) cos a(x’ — z)dx’ =0.
< Y
But, if imany positive number,

& ‘ dg[ glz') cos wz” —z)dy’

\“: P P
™ P da rg(x'} cos alz’ — x)de + [ da| gx'} cos afz’ ~ x)dx’
1o e A -8
= %\‘}\ det Vg(x’) vos a{x’ — x)da’+ [:d'a [ g{x’} cos afx’ - x)dx’
1 s la A LIt

3] aaf o

.- A i

') cos afx’ —x)da’ +-§[ du [ ¢lx’) cos of2’ —x)d’

=}‘ da\ gz} cos {u+ X){x' —x)dx’ +§l dﬂ[ g(2’} cos (& — A} (" ~x)dx".
Therefore

(" daf gty oos afe’ - w)a
o la

—r}d'a rg(x'} cos A{z' - 2) cos afz’ —zhdz" =0, ...coi(1)
A1) .2
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Again we know, from § 120, that
Cg(x’) sin oz’ —2)dz’
iz uniformly convergent forla A= 0
It followa that \i:da g:g(x’} sin a(x’ —x)da’

exists, for A; > A, > 0.
Also

L3 * .
E da ‘ gla'y sin a{x’ —x)dx’
Ay la

g 3}
A\

- A .
:\ 'dx’] g{z')sina{z’ —x)da  (by § 84) :n:‘

cos AO{J: -z)_eos Ay - x) \
={ o (<, - e
| o) R if‘_;x’dx’ i
since both integrals converge.

N\
>

But we are given that www. dlgrg&ﬁ}i:d@ry \org.i
converges ; and it followa that ! g ,(,—"}"céx’
a B3V

.3

also converges, so that we know thfb

\( (\ ' - x
k{‘x, OS - )d ;
is uniformly convergent fm‘ Ay =10, and therefore continuous.

o
- i cas A’ ~ ) = =) gy
1 113?;’ S'(x) T —z d x’—xdx

$
Tt follows rams(’2) that, when A >0,

A - . P
_ _,r:t) , Ly CO8 AL ) L g
Eo ; i\g(x)bma ' —x)dy = \ d ---Lg(x)—fx—x- dx’s . (3)
Al\e as before, wo find that, with tho b()l‘ldltlons imposcd upon g{=').*
g( cos:(x —x)d .

J\—m" .3

Therefore, from (2) and (3),

P . T eos e x) S, (4
Lda!ag(x)smq(x x)dx _Lg(x)— - ;_x—dx, ......... (4]

) o - ‘
d Y sina(@ —2)de' =) D gut i 5
an '\n da!ag(x)sma(x =) dx _L x,_xci:c. ........ {5)

*This can be obtained at onee from tho Sccond Theorem of Mean Value, a#

proved in § 58 for the Infinite Integral; but it is easy to establish the result, a8
in § 119, without this theorem,
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oL il +]
Again, gince ! da\ =} sin ofz’ - x)da’
il S
A w o
exists, we have [_Ada[ §2’) Sin ol ~2)dL =0 ...ooovvvro (B)
From (6), and the convergence ofj [ glz") 8in a(x’ —x)dx’, it follows
A la
that
! | L (') sin alz’ — z)dz’ — _[;\ qu ole') sin e - ) =0.
Thus

\ a’a[ gla’y sin (a+ AY2 —xjdz — ( da[ g(x) sin (¢ — A){z’ —:r{d::’*()
i i
Therefore j { gla’) sin AMz" — x) cos oz’ - z)dx’ —0 £ ':’ ‘.....,.....(7}
" 3

Multiply (1) by cos {Az+ u} and {7) by sin (Az+ p) a.né\éubtract

It follows that
[ da‘ g(2') cos (Azx"+ p) coza (m”\\.ﬁ:}dx’:o. ervameeeiee(8)
i - 4 ’\.

And in the same way, with the eonditions i}:posed upon g(z’}, we have

L dﬂj g{z'} cas W EEAI) mfff)(r:?ar;gi:g =0, prvireseenreneen [

Thesc results, (8) and (9), ma.y'b,e,wmtan

[wda \‘ﬁf{x’) cos a{x” - x)de’ =0,
RS

" FQ& \‘dd'ﬂw’) cos a (' —z)dx’ =0,
Js -

when £(x') =g(a'Peos A+ ) in (a, o} and (=0, -a’).
But we know ‘I;h-a:t, when f{) satiafies Dirichlet’s Conditions in { — o, a},

'\[:?a\ Sz} eos ale’ —-x)dx_g{f(a:+0)+f(x 1)) MUTOR § §

when hew Timibs e,:ust (Cf. § 119 (5).]
Asff}m‘g (10} and (11}, we sce that Fourier's Integral formula holds, when
the‘arbmtrarjy functicn satisfies the conditions imposed upon it in this section.
2\ "\ y It is clear that the Tesults just established still hold if we replace cos (A2 + u)
\ ) in {T) by the sumn of a number of terms of the type
@, 608 {Ay® + )
Tt can be proved * that tho theorem is also'valid when this sum is Teplaced

..£10)

by an infinite series
Sa, c08 (M + 1)
1

when i% converges absolutely and the constants A,, so far arbitrary, tend

to infinity with .

*Cf. Pringsheim, Math, dnnalen, 68 (1910), 394,
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122. Fourier's Cosine Integral and Sine Integral. In the case
when f(z} is given only for positive values of «, there are two forms
of Fourier’s Integral which correspond to the Cosine Series and
Sine Series respectively.

I. In the first place, consider the result of §119, when f{x)
has the same values for negative values of z as for the corre-
sponding posmwe Values of 31 ie. f{ -2)=f(x), 20

Then I da f:.r:)cosa{:t —x)dy’ '
= %rJ- da‘[ f@')[cosa(z’ +&) +eosals’ —x)]da ‘.}"\

2 x E , , s m;\t\'
== dal f(z"}cosaxcosax’dz’. N
o 0 ’

It follows from §119 that when f(x) is defined for positive
values of x, and salisfies Dirichlet’s Co-ni(ﬁions in any finie

interval, while [ J{x) de converges absolafely, then

www.dbra uhbrﬂ.ry org.in
I da_[ flz )cosaxcosax b= f(z+0) +f(z - 0}],

al’ every point where f (z +0) and _f (z - 0) exist, and when x=0 the
value of the integral is f{ 0, % this limit exists.
Also it follows from §\f20 and 121 that the condition at infinity
may be replaced by pither of the following :
(i} For seme posmte number and to the right of it. f (z)
-:k,a\l ¢ bounded and monotonic and lim flz')=

- e

or, {u) ar) some positive number and to the right of i, f{«')
C%kall be of the form g(x') cos (A2 +a2), where gl{a’) 18

al
e

SN bounded and  monclonic and lim g(z)=0. Also
~O . i
\ J. ‘g(; Y dwr st converge.

IL. In the next place, by taking f(-a)= - f(z), x>0, we see
that, when f(x) ¢ defined for positive values of z, and satisfies

Dirichlet’s Conditions in ary finite Tnterval, while j flz)dz con-
verges absolutely, then, 0
2 { da_[ F') sin ax sin a2’ de’ = 3] f(z +0) +f{z— )],

al every point where flx +0) and f{z—0) exist, and when x=0 the
integral 18 zero,
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Also 1t follows from §§ 120 and 121 that the condition at infinity
may be replaced by one or other of those given under (I).

‘it should be noticed that, when we express the arbitrary funetion
flx} by any of Fourier’s Integrals, we must first decide for what
value of  we wish the value of the integral, and that this value of x
must be ingerted in the integrand before the integrations indieated
are carried out (ef. § 62),

123. Pourier's Integrals. Sommerfeld’s Discussion. In many of the pro}-
lemy of Applied Mathematies i the solution of which Fourier's Infegrals
oceur, they appear in a slightly different form, with an expongr@iﬁl’. actor
{e.g. e~} added. Tn these cases we are concerned with thg. Thutting velue

W,

as t—0 of the integral N
RN I, \
(f;{t)_T—rL da}af(x Jeosafx’ - x)e .m.{‘l(,
and, =o far us the actwal physical problem is concerned, Yhe value of the integral

Jor £=0 iz not required. IRV . )
1t was shown, first of zlt by Sommerfeld,* t{i\t, when the limit on the right-

hand side exists, \

A

lim ;1_ ‘:da V; fiz'y cos w%ﬁ F{%ﬁ#gﬁf &?g?h—#f (x—0)1,

%

et when & <<x<bh,
Ny =}fla+0), when x=g,
) —1f(b-0), when z=b,

N

the result holding in the \e;a‘:se of any integrable function given in the interval

{a, b} ¢\J

The case when, tl.%\\m.t’erval is infinite was also treated by Sommerfeld, ‘but
v Young.t 1t will be sufficient |

on aatisfies the conditions 3

it hag been exgmi“gcd in much greater detail b :
in this placatdlstate that, wher the arbiirary functi : ditio
at inﬁnitv&'én.puscd in §§ 120-122, Gommerfeld's result still holds for an infinite

intervade & ‘i
Hc\\@\"ér, it should be noticed that we cannot deduce the value of the
intedeal o o
'.\&,' 1\ dﬂ‘.l f(x’}cosa{x’—x)dz’
4 Tl &

This would reguire the continuity of the function
[ k ’ —xatf g’
=11 "a|] f) cosata’ ~aje=rede
Tlg &

for ¢=0. ‘ ]
Wo have come across the same point in the discussio

of Fourier's Series. [Cf. § 99.]

n of Poisson’s treatment

*Sommerfeld, Die willkdriichen Funclionen in der mathematischen  Phystk,
Diss., Kinigshery, 1891, )
t1W. H. Young, loe. cit., Froc. Royal Soc. Edinburgh, 31 {1911}
x

.1
- ot
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EXAMPLES ON CHAPTER X. A
1, Taking f{x)as 1 in Fourier's Cosine Integral when 0-20 -1, and .Qs\z'ém
when 1< x, show that W
N A . - (".}.
=" \ SIN LB BT 0<za 1) AN ¢
w1y o\t\'
.
} _2 | BN G eOs U (z = 1} /
Tl a \’
2% sin o cos ar
O_h_.ln == (Lh\}‘

2. By conzidering Fourier's Sine Integral fog b \ﬂ'r (£ 0), prove that
\,T%w&ihmjlbm@“‘y 01 E{ in
lp o

and in the same way, from the Cosme In'tegral prove that.

'\"” CORAT | _

) ‘\T EB
3. Show that the expry s{iﬂ.’
2:3\‘“’ ‘(ﬁ.r d0 9
W1 E)

2 \ o
Fmi Y coy v oy
M ‘o

i3 cqual to 2 when™J* @ < @, and to zero when = > a.

ot h sin gh — g
Show thet s 2 . L sin gb — sin ga
4, Rhow tlz*{‘!% r_‘ sin qx { p tan q— —F } g

iz the cmh\to of a broken line rumning parallel to the axis of © from z=0
j to =(t “and from x=56 to 2= oo, and ineclined to the axis of x at an angle a
' betﬁeﬁna a and =5,
'\

5. Show that fla satisfies the conditions of §120 for Fourier's

~/Il

;l Integral, and xe:nf_y independently that

2. [® R S |
) . da| cosaxcos gx’-— ,=-- when r>0.
i S Tog Lo '\-'I'C N.f_;;

§. “bhow that j'(.r)r!m;

T satisfies the conditions of §121 for Fourier's
Integral, and verify independently that

win %
x

i [ dx’
EL da! sin 2’ cos a(x”—x) — & =




APPENDIX I O\

'\ “

PRACTICAL. HARMONIC ANALYSIS AND PERIODOGTAM
ANALYSIS

A
1. Let y==f{w) be a given periodic function, with pe.ffo} 27, We have seen
that, for 1 very general elasz of functions, we may represe:it f{x} by ita Fourier's
Suries ~NY;
@y + 05, €O 2 + 05008 2E ..
+b, Bin #4540 +...}’
where @y, 0, @y, ... by, by, ... are Fourier's (;'{aﬁata.nts for fiz). We may euppose
the range of x to be 0 Z & = 2w, W Hidhblperiditisay jnetegd of 2w, the terms
::E nx are replaced by ;}i?f 2nw{a, und the range becomes 0= 2= a.
However, in many practical ~al_ﬁplications,  is not known analytically as a
funetion of 2, but the relation between the dependent and independent variables
is given in the form of gﬁﬁve obtained by continucus observations. Or again,
we may only be giventhe values of y corresponding to isolated values of #,
the observations having been made at definite intervals. In the latter case
We may supposs that a continuous carve is drawn throngh the isolated points
in the plane(0f %, . And in both cases Fourier’s Constants for the function
can be obtaihed by mechanical means., One of the beat known maechines for the
purpds{i}ielvin‘s Harmonie Analyser.*
?.f’fh'le practical questions referred to 2bove can also be treated by substi-
¢ t-l{ltiiig for Fourier's Infinite Scries & trigonometrical series with only a limited
“\\mumber of terms,
4 Suppose the value of the functios given at the points
G, &, 2q, ... (m - 1ja, where ma=2r.
Denote these points on the interval (0, 2} by
Tgs X1p By voe L1

and the corresponding values of y by
s s ?;’z» s ym—-l‘

*Such mechanical methada ste deseribed in the handbook enttitled ,Moa'a::rn.
Instruments and Methode of Caleulabion, published by Bell & Sons in connection

with the Napier Tercentenary Mecting of 1814,
323
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Let 8,4T) =g + @) CO8 T+ay CO8 2+ ...+, cOH ux)
+b, sin &+b, sin 20 ... b, sinar) )
If 22+ 1 =m, we can defermine these 2n + 1 conslants so that
sl =2y, when r—=0, 1,2, . 2n.

The 2n+ 1 equations giving the values of e, ny, ..., b, ... &, sre as
followa:

dyt+a,+ ... L O + o £\
Qg+rey COS Xy F .o Hp COS PR ool |l CON N @
+hosina; F.cb by sinpey o By, sinouy } e X '\~>
JO
‘,.4
@yt COY Eap ] ooy CO8 g L COS RLE, Yy
+ b, 8in zg, ... 4 by sin prg, b +b gin n, f\\
Adding these equations, we see that
(Zn+ 1y = iy,., ,'\\':
.t ¢*L
since 1+cos gt +cos 2pa + ... 1 co%»"f' 2Rt =10,
and Bin} fﬂglzmﬂb'ral fl&z R =4),
when {(Zn 4 l,ju\—2r
Further, we know that ° ’. v
1+cos po cos ra +cos Qpa cos Qm
+. +(;0$~2upa cos 2nra=0, p47,
cos pa sin 7o + cost N'ﬂn?m =12 .. h
+ Nt 008 2upa sin 2rra =0, [ r—1,2, ,..nj’.

And 1 tmbzpa +oeostpo+ .. +eos 2apu=F{2n + 1.

It follows that; if we multiply the second equation by cos pry, the third by
08 Py, 404! hnd add, we have

"s'\ (2n+1}ap_ 2, Py COB proL.
Si];ﬁ{:il'lir, we find that
m\./
\ } H2n+1jb, = 2, %y SiN pra.

A trigonometrical series of (2n+ 1} terms has thus been formed, whose sum
takes the required values at the points
0, a, 2a, ... 2rna, where (2n + 1a=2x.

It will be cbserved that as n—w the valuos of a,, @, ... and by, by, ... Teduce
to the integral forms for the coefficients, but as remarked in § 90, p. 218, this
passage from a finite number of equations to an infinite number requirey more
careful handling if the proof is to bo made rigorous.

3. For purposes of ealeulation, there are advantages in taking an even
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number of equidistant points instead of an odd number, Suppose that to the
puinty
0 a2, ... (20— 1)y, where na=r,

we have the corresponding values of g,
Yo Yua Yoo oo Yapers
In this case we can obiain the values of the 2i constants in the eXpression

fp+a c03 & f-ageo82e+ ... a, ; cos (n- e +a, cos m:}
L

+bysinw by sin 2e ...+, sin (w— 1) N
&0 that the sum shall take the values 7, 7. ... #5,_, at these 2n point§ in
{0, 27, AN
It will be found that \,,\
1 Qar-‘-l ."‘
L %rryr ] |
T m\
fp= — Z Hycospra, if p#Fn L
=t
W :r',l’n
=1 >
zln 5 1,*,, O3 rw K¢ &"
by 2, #p 810 grrex C A

Runge* gave a convenicnt schema\'fore‘ it Hlphair&’legb Zolhtants in the case
of 12 equidistant points. This aqﬂ‘a similar table devised by Whittaker for
the case of 24 equidistant pomf's Wwill be found in Whittaker and Robinson's
Calculus of Operations (1924 Ch. X.

4. This question may 1)}1001{6(1 ab from another point of view. Suppose
we are given the val\\\of ¥, viz.
J . Hor H1- Moy o Ym-vr
eorresponding fo jﬁe points
\ 0, o, 2a, ... (m~ e, where ma=2r.

D nom\heso values of z, as before, by
Tgy Tps Xpy coe Ty 10
"\'Lz'?- s () =rty 44, cOS =+ c08 2o+, +a, co8 m:}
‘\w\; 4y sin x+bysin 2e k... b, sin nx
For a given value of n, on the understanding that m> 2n+1,1 the 2r+1

CONStANtS (y, ), ... thy, by, .. Dy, aTeto be determined so that s,{x) shall approxi-

mte ay closcly as possible $0 ¥y, ¥ 1o Yot at g, Ly -oe Eya-

* Math, Feitschrift, 48 {1503} and 52 (1903).
{Leipzig, 14904), 147-1064.
$1f =2+ 1, we can choose the constants in any pumber of ways so that

sa{) shall be equal 10 ¥ Yur -+ P B T Tpo oo T for there are more cunata}r:ts
than equations., And if m=2n+1, we can ohoosc the econstants in one way so that

thia condition is satisfied.

Also Theorie n. Praxis der Reiken
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The Fheory of Least Squares shows that the elosest approximation will be
obtained by making the function

wo |

::‘(’Jr — iy (a1,

regarded &s a function of agty, ... @, by, by, o Binbmum.

The conditions for a inimum, in this vage, are:

a1
o

T}.'n (y?‘ _’-‘n(“"r)] - l 2\
m 1
Sy el eospr =0 o po 2

'r ]

¥ 4 N ¢
N\

} o\
Z {(#r ~ 8 (@)} 8in pr, =0 A
ON
It will be found, as in § 2 above, {hut these equationy lmul o fho following
values for the coefficients: ~\
m-l \ 7
mitg= Ny,
el p
=1 ,:i‘\\',
dmng = L Yy COS T . \ N
X0, ...m

mot »
%m%wwmsﬂmfxark g)‘].‘n‘

But if m s even, the coeflicient oy {\wh&rl p=Ltm)is given by
\ ‘ﬂvl
Ml =0 ¥y COS T,
r=0

the others remaining as ahovg;.&\
. £ \ . 4
In some cases, it is suf%&‘l&t’ to find the terms up to cos x and sin &, vIZ.

fty -6y e+ by sin e

The values of a,, 2 ﬁn:l’&l, which will make this expression approximate mos
closely to

’\’;\ yﬂ: yp yas J"Jm_1
at ’\‘../ 0, a, 2a,...{m—1, when mo=2x,
are t-hogr.}gq%en hy:

* m—1
N"® Wity =2, Yy,
=M
\ } -1
g i?ml = 2: Yy CO8 T,
=0

m-1
Imb = ¥ 4y uind ra.

w1

Tables for evaluating the ¢cocfficients in such cases have been constructed by
Turner.*

5. In the preceding scetions we have been dealing with a set of ohservations
known ta have a definite period. Tho graph for the observations wounld repedt

*Tubles for Harmonic Analysis, Oxford University Presa, 1913,
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itself exactly after the lapse of the period; and the funetion thus defined eould
he decomposed inta simple undulations by the methods just described.

But when the graph of the observations is not periodic, the function may
yet be represented by a sum of periodic terms whose periods are incommen-
yurable with each other. The gravitational attractions of the heavenly bodies,
to which the fides are due, are made up of components whose periods are not
commensurable. But in the tidal graph of a port the component due to each
woulld be resolvablo into simple undulations. A method of extracting these
trains of simple waves from the record would allow the schedule of the' tida
csoillations at the port to be constructed for the future so far as these, com-
ponents are concerncd. ,\' N’

The usual method of extracting from a graph of length L a part that repeats
itself periodically in equal lengths J. {s to eut up the graph intggegnients of this
lepgth, and superpose them by addition or mechanically. FDghert are enongh
segrments, the sum thus obtained, divided by the numf?qf’of the segments,
approximates to the periodic part sought; the otherdseilfations of different
periods may be expected to contribute a constant o the sum, namely the sum
of the mean part of each. K7

6. The principle of this method js also 9gedin searching for hidden periodi-
cities in a set of observations takﬁ? , OveL el iderable time. Suppcfse that a
beriod 77 oceurs in these observat-ion&aﬁ& 13 Qﬁw tREF UYL equal intervals,
there being » observations in the period T

Arrange the numbers in rowg'thus:

Uy, Uy, ghg ST T I

~ W Uy
Y Upi1s { ‘\ Upsar m-z Honey

Vippviy T vmprr U vngm . Upnezr  Hmeae
Add the verticsl golumns, and let the sums be

4 \" Ua, Up Ug, LR Un-zy Uﬂ--l'

In .ﬁwré:.;(;quence Ug, U1y gy o Uy the component of period T' will be
mult-}p}ied m-fold, and the variable parts c‘»f th(.a other commecnts ma.ir b‘e
E;Ki)ébted to disappear, as these will enter with different phases into 1511(: ori-

s Jgontal rows, and the rows are supposed to be numerous. Therdlﬁcl‘(‘llce
N\ Jbetween the greatest and least of the numbers Up Up Uy e Dﬂ__a,. b; .
furnishes a rough indication of the smplitude of tl‘le ?omponent c.'f pf:éw( s
if such exists; and the presence of such a period js indicated by this difference

n-1

beglegt ]slgzl“lote the difference between the grea.tes.t and .least. of I;ahe. nu;n:):er;
Up U Uga oo U0y Uy gorresponding t.o. the trial pfarmd x . 3111 1svp o "
ag a function of #, we obtain a “curve of periods.” Thfa curve .mll‘ ave peaks
at the values of z carresponding to the periodicities which rcally.ex.lst. “;:e:
the presence of such periods is indicated by the curve, the statistics are the

lysed by the methods above described. ) . o
&n;l{vi?met}};ad was devised by Whittaker for the discussion of the periodicities
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entering into the variation of variable stars.® Tt is a modilication of Schuster's
work, applied by him to the discussion of the statisties of sunspots and other
cosmical phenomena.¥  To Hehuster, the term “periodogram analysis” is due,
but the “curve of periods’” referred to above is not identical with that finally
adopted by Schuster and termed pericdograph (or perimdfogram].

For numerical examples, and for descriptions of other methods of attacking
this problem, reference may be made to Whittaker antl Hobhison's Calewlus
of Observations, Chapter XIII, already cited, and to Schuster's papers.

r——— e e — :“\

* Monthly Notices, K A8, T1 (1911, 686, A o
Bee alsu a paper by Gibh, “The Periodogram Analvsis of the \'ax.rinf..iul<&f.s,s
Cygni,” ibid,, T4 (1914), 678 NS

« \J/
tThe following papers may be menlioned: AN
Trane. Camb. Phil, Soc., 18 {1900}, 108, AN 3
Trang, RBoyul See. Londonr, (A), 206 (1904, 65, '\()

Proc. Royal Soc. London {A), TT {1908), 136. \\:)
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APPENDIX 11 KN,

N

LEBESGUE'S THEORY OF THE DEFINITE INTEGRAL

1. Infroductory, In Chapter JT wo have seen whatis ‘meant by the lower
end upper bounds of a hounded linear set of points,¥The limiting peints of
such 2 set have been defined, and Weierstrass's\Jheorem, that an infinite set
bounded above and bielow must have at lp'st one limiting point, has been
rroved. s“x\

'jl_,cbesguc’s Theory of th(? I)eﬁ;}i\;ﬁg @E’gﬁq}l%ggrlgds eiq‘se‘rj}}glial] ¥ on thc.idea.
of the measure of & set of points.  Thig\is a number, ]}gsﬁ-n% or Zero, ussociated
with the set and depending uponj{;;., “$When the set consists of the points of an
inlerval, open or closed, the Jﬁ-i?asﬁre is to be the same as the length of #he
interval. And the measurc df \the set of points, which belong to one or other
of two sebs without common points, should be the sum of the measures of

these two wets. O
Tt is this very sulld and rather diffionit idea of the mensure of a set that

forms the chief ghgtacle in the way of the introdnction of the Lebesgue Integral
into Analysgis i, pface of the Riemann Integral. The discussion which followa
is confined gdBounded Linear sets, though oue of the advantages of Lebesguc’s
work is €Hat the extension to two and three dimensions is more or less im-
medi f;,,.\'“Among the alternatives at our disposal the treatment by de la
Valf!%[’oussin in his Cowrs o Analyse Infinitésimale, 1 ( g éd., 1014}, has been
afd;éptcd. The more compact and direct development in the first and second

. £ 'hh'a_pt,erg of hia Iglfégralcs de L{‘bé&‘g?!‘e, eto, (1916}, HEEINS INOre difficult ns an

introduction. Bub much use is made helow of the third chapter of that work
dealing wilh the praperties of the Lebesgue Integral. '

The first step in this extension of the Riemann Theory of Ir_ltegmhon was
made by Jordan* (1892), when he introduced the idca of the tuner and owfer
content of a set of points. In 1808 Borelt showed that a mnch more useful

wJordan, Cours &' 4 nalyse, 1 {27 éd. 1893), p. 98. He uses the {erms aire intérienre
and wire extérienre.
+Borcl, Tecons sur ln théorie des fonctions (I* éd., 1898).

edition {1928}, this work is both revised and enlarged.
320

I the third and last
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concept was what be called the messure of the set,  Phe principles that guided
Lebeague in his theory of measure were those of 13 arel, and bis definition and
earliest treatmoent are given in his Taris Thesise Tatéprale, Longuenr, dive —
published in Ann. di Matematica £33, 7, (1902% Phissas follewed by hisbook,
Legons sur Pintbgration ef In recherche r!e Junctiows priweitives (1904), of which
a second and greatly enlarged edition has just appeared {1028}

2. We now give such definitions and simple properties of bonnded linear sets
of points as will be reguired in the discussion of measure mud the Lebesgue
Integral. '

As hefore we denote a set by B, and woe shall assume Lhat ts peinds L on the
interval @ = £ 27 b, The peints of (@, ), which are not peintz of 10 fur\m‘the
complementary set denated by CE. Cleadly €{C'8)- N . \

A set E is said to be cowdlable (or enmmerabie), whin there is « gmdphe corres
spandence bettween the points of the set and the positive intrgers. CRMevery paint
of & there corresponds a positive integer, amd to every pn«aﬁu integer there
corresponds a point of £,

The terms of a countable set can be written as N\ )

Upe My gy oer o a7
X
The set 1, 4, 4, ..., tin, ... s oby mu-,h wun’t‘.mhlo

The positive mtuma? ?1?;‘?‘&‘?"\5‘!‘,4’@ A Rartr;fyf?e

For every such number can be (\pr;%od ni o f_ma tion py, where pond ¢
are pesitive integers without common’ factor. We arrange these feactions
acgording to the sum p4g, bmmi‘ma« in each with the fractivn of lowest
numerator. A

When p+¢=2, we have 14 01%), arul this is taken as wy.

When p+¢=23, we h’nb\g\and 3, and these are taken as u, and vy

When p +4¢ =4, we have § and 3, omitting the namber } alre: 1ély med and
these are taken s And wr anid 80 on,

A set T is soid 0N a closed seb if it containg its miting poinls eg. the sub
Lt s 1;({1:2}16513&, but, if the origin is included in the sct, it henomes &
closed get, \§

A puinb'i\rfab.scism 2 i85 sitid to be an inferior point of the sel, if o weighbour-
hood ofP'u < x< fi, exists ¢l of whose points are points of the sk
. P ?omi P is said to be an exterior point of the set E, if it is an inferior poent
%{(}D in other wordy, there must be a nughhourhood of P none of whose
points are points of .

A st E is said to be an open. set, if all its poinis are inlerior points of the sef,

Open sets have the émportant property that they are composed of a finile, 07
eowntably infinite, number of not-overlepping open intervals.

To prove this, take any point P of the set, and let its abseissn be 7. We
can divide all the positive numbers into two classes A and B ag follows: 2
number b is put in the lower clasy A\, if all the poinly 2 given by, T E <@+ &
belong to the set; and it is put in the upper clags T3, if Lhis is not the ease.

There are numbers of both classes, and every namber in the class A is Jess than
«vory number in the class B.

If p is the number separating the two classes,
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o+ ¢ is the right-hand end-poiat of the interval associated with the point x,.

Similerly by taking negative numbers, we obtain the left-hand end-point

Xp ~A. To all the points of the open interval x, - A <x=<Xy+ j+ thissame

interval correaponds, Now consider the set of all such open intervals.

They are obvicusly not overlapping,

Let €, €5, ... be a monotonic descending sequence of positive numbers, sach
that lim ¢, =0. There can only be a finite number of the intervals of the set

F—
just deseribed, each of length== ¢;. We c¢an arrange these in order from Yt
to right.  Again there ean only be a finite number of those that remain, eath
of length & ¢,. These we now arrange in order after the first group; gﬁﬁ'gs on.
1f the end-points @ and b ave points of the open set, thoy are to belthe left-
hand end-point, and right-hand end-point, respectively, of int;i;rva,la {a, a),
{B, b), open at the ends a and f. ~‘ :

The complement of an open s B wilh respect to the closed iftettala =z Zhisa
closed set. \%

¥or let P be a limiting point of CE. Then P cannbi‘be a point, of £, other-
wise there would be a neighbourhood of P contdibing no point of CE. And
this i3 impossible, if P i3 a limiting point of’f?);a\ v

Apain, the complement of a closed sel B ia'ap open gel.

For let P be a point of CF. TFherepdstaen ibraighbirheod of P without
any point of B imside it; otherwigeld would be & limiting point of B, and
therefore a point of E. RN \

Two sets Ky and K, are snidue be equal, if they consisl of the same points,
and we write By=E,. 4

A set B is said lo be gre@ﬁar than a set E,, if E, consisls of the paints of Ey
and some olher points a&id’we wrile By > Ey.

And B, < B, medus that B, > 1.

3. Operations(6n” Sets. The set ¥ is said to be the sum of the seta
E,, E,... B When it iz composed of the points whichk belong to at least
one of these(sets, and we write .

\\ E=By+ Byt + By =2 Br.

TB& ket B is said to be the difference of two sets Ey, By, when it co?sists of
. £h& points of B, which do not belong to Ey; and we write E=E, - If, o
3 The sct of points which are common to all the sets By, By, .- By is callo
the product of these sets, and we write .
E=E, . E;. .. E,,:]II By,

Multiplication and subtraction are reduced to addition by the use of com:

plementary sets, as it will bo seen that
CE,+CE,=C{E, Ey), E,E,=C{CE,+CE,), o
C(E,+ Ey) =CE, . CE,, (B, —E)=CE,+EB, F,- E,=FE, . &:ﬁ'

The Commutative and Associative Laws of Algebra hold for the addition
2nd multiplication of sots; )
€y E,+E,=E,+E, EIE}:E",EI',

B+ B +E.=F +{EB.+E,) E.EE, =B\ B0
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Also the Distributive Law applies;
EfE  Eg—K B K E,
and the ordinary algehraical process gives. for example,
R R O A e N R N L T LTI Y

Rince in general (£ — £,) = E,+ £, bul is actaally &)+ £ care mugt e
exercised in dealing with subtraction.  In peactice there is ne diffientty, for
subtraction is reptaced by multiplication and addition. malkisg use of comple-
mentary sets. The commutative, associative and distribntive laws may then O\
be emploved. N o

The operations above referred to are finite; that is to say. carried mlt'fm.}
finite number of sets.  But addition and multiplication can be t‘xtcn:lfgr‘lfto a1

infinite number of scts. P !
N
The set
. ¢
E_E K~  toxn=XF, ’\
is composed of the points which belong to at least one@fthe intinite number
of gets £, B, ... to =, K7,
4 W
The infinite prodnet ,“x\

W \:’5 W Jﬁl%{l“bfi‘% 1?% ;I:]' l:ﬁf
is made up of the points which are enmn)drj to all the sets £, £, .. to=m.
The distributive law &N

a3y
4

EAE,+ Ej+ . to@ ) 2B, o+ B B+ ... fo =

applies again here, and it holdsalso for the case of a finile number of factors,
which themselves may be Q’\ﬁe"or infinite sums.

Further C{E;+E M+ tow)=CE . CE, . OF; ... tox
and ("(@','\E;- Ey o tox)y=0E  CE,+ (K . tox.

It iz clear thflt;it\é"sum of a finite number of conntable sets is a countable set,
for we can 53?:‘:{]1 the first points of the scts in order, and then place after
ithem all tE™Nstcond points of the sets in their order, and so on.

But ity Important to notice that the sunt of @ eowntably {nfinite number af
£6 g{ztabﬁc'aef& is also a counfabie sef.

\Tf} prove this ket the sets be

E,=ay Tttt Foees
Ezz“{z'{."".%;"‘;ﬁi'a"" ey
By m“:'t'l"‘*_'.-“é'!:."'aaa tos
B,=ai 4 tog+..,

and so on.

Then ; Ey=uy tag t ety Fag o+ ...,
where the points in the sum are taken from left to right along the dotted

diagonals a3 in the above scheme.
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From this result we can dednce that an open bounded linear set of points can
be broken up into @ countably infinite set of not-overlapping closed indervals. ®

For we have zeen (§ 2) that a bounded open linear set is composed of a finite
or courtably infinitc set of not-overlapping epen intervals,

Lot (a, £) be one of these intervals.

Divide it into four equal parts, and take the two middle parts, both closed,
s intervals Ay, Ay, The remaining left-hand quarter and right-hand
quarter are then te be divided into two equal parts, and the closed halves
lying nearest the cenfre are to be taken as infervals A,,, A,,. The outén

parts are again halved, and so on. A\
We thus replace this open interval a <tz < by the countable set\'uf “hét-
overlapping closed infervals &), Ajg Ay, Bpg, Ay Bggees s \.

In this way from each of the finite or eountably infinite set ;O‘f:’open inter-
vals we obtain a eountably infinite set of closed intervalyand ‘the result

follows, AN

4. The Measure of a Bounded Linear Set of Points\)

1. Let & be a set of points all Lying on the int,gm'rlbl\d Z 2= b, and let all the
points of E be enclosed as interior points in aQse\f\cff intervals &, 8,, ..., lying
in (e, &) .".’

This set of intervals can be replaged ,ﬁjﬁi{ﬁﬁﬁ]ﬁ@gﬂ;@fﬁj&}pphg intervals
Ay, A, Ay, ., such that every point of % i3 an interior point of one of the
intervals, or the common end-pnint.‘o'f"two adjacent intervals, For start with
8y and call it A;.  Then take §; antlsuppress the parts, if any, of 8, which lie
in &, If &, lies altogether oytside §,, we take it as A,; and also if 8, abuts
on 3, but does not overlapd © I it overlaps, we take for A, the part of &,
outgide &, and we hawv ix(‘adﬁition their common end-point. If §; lies wholly
within 8,, we replace 8, by the two open intervals outside 8, and the two end-
points of 4. 4

In this procedsfat any stage when we take in the interval 3, we add to our
set of not-ov.exla:ﬁping intervals Aj, Ay, ... , which replaces 8, 8, ..., a finite
aumber of igt-overlapping intervaly, and, possibly, the common end-points of

adjac(:gb}\ﬂ;ervals. . ]
Neth et Ay, A, ... be o finite or countably infinile sel of not-overlapping

igtertnls, ol in (a, b), or with a and b as left-hand 8??11-}3{{{?;5 or.rigkt-hand end-
“DOTAL, respectively, such that every point of E i an inferior poini of one of the
intervals, or the common end-point of two edjacent sntervals, Lel A denote

the sum of the lengths of the intervals of the set Ay, Dy -« ) .
The lower bound of SA for all such sets of tndervals 18 called the exterior

measwure of B and denoted by m(E).

* The ward orerlap i3 used here in its natural sense ; two intervals averlap dlf ihcgy
have points in common which are not eucl-point.s of either. Thus (0, 1) an ! (L2
overlap. The closed intervals (0, 1} and (1, 2) in & more e:fact Sen}s:e overlap, s,:
there i8 & point comamon o hoth ; but in the text this meaning of the term iz ne

used. A pair of such intervals (open or closed) may be said to abud.
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The intcrior measwre of B in defined as (b — a) — m, (CE), where CE is the set
of points of & == 2 7= b which axe not points of .

The interior measure of F is writbon m,{ £), and is not negative, sinec m{CE)
cannot cxeeed (b — a).

1L To prove m;(E} = m { E.

From the above definition, there must be a set of not-overlapping intervals
ay, oy, ... for B, as above, such that

m, (B)Z Za < m,(F) +i¢,

and similaty a set 8, f,, .-. for CE, such that

m{CEYZZEF < m {CE) +1e, \' \\
¢ being the usual arbitrary positivo number. « \
The combined set -\

ay, fir s, B, - T'
can bhe teplaced ag in (i} by a set of not- m'erlappmg inteny aia 571 Voo -oe y With
possibly the addition of the common end-points of certain ad]a sent intervals
among the 3's. \ )
This countable sct 3y, ys, ... of not-overlapping Qtu valg is such that all the
points of @ = 2= b are cither interior points of these intervals, or common end-
points of adjacent intervals.

dbraglib 3g.in
It follows that A rag;l, Izab?am &
1

For, when # is any positive intég'er,' i}y,<(z‘;—a.).
1

Thus \le yr-—b .

{ Wit 1

If possible, let this lin‘b\\bo b—a—2¢,

; e
Porm a new eet of mturvala Y1+ Vg --- by adding 57 to wir=12, ...}
at each end. \ ~\ 3

Then every pdint of o x==b iy an inferior point of at least one of the
intervals y¥,.98,/".. , and by the Heino-Borcl Theorem (§ 31,2, p. 71) this 18
true for n,\\\'et made up of & finite number of them.

Heﬁw b~ a<‘w<)(%+§f—)<(b—a—2e’}+e’,

'W‘hlch is impossible.

But it is clear that i‘y, = ?m‘c:, + iﬁ,_
1 1 1
Thus we have b—a<m (B)+m(CF) +¢,
and m( B = m, (B}

L If Ey> By, then m,(Ey) = m (B,),

If possible let M, Ey <t m,E,.  Then there must be a set of intervals Ay, g -

for E,, as in the definition of the exterior meastre, such thai the sum of their
lengths is greater than m,{#,) and less than m, {Eq).
Butas K, contains E,, this set of intervals A,, Ay, ... will also serve for
E, and the sum of their lengths cannot be less than m,{ ;).
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IV. Further if B> E,, then m(By) = mi{ K.

For OB, > CE,,
and m (CE )= m, (OF,).

Thus {h—a)—m, (OB} = (b -} - m,(CF,).

Therefore i { By 2= my ().

V. To prove m, (B, + B =m B, +m B,
Lt ay, @y, -.. be aset of not-overlapping intervals for £\, as in the definition
of (I}, sneh that
m(8y) = Sa<m, (B + s, O
> /
and §;, fo, ... aset for E,, such that
my,( E,) ffE r<m, [ Ea}+ ke,

¢ being the usual arbitrary positive number,
As before, from the set
ays ﬂl, Ay ﬂz: 'x )\\'
we form o nob-overlapping seb pp, Ya, ¥y e ,n}kgn {a b), such that every point
of { ¥y 4+ E,)} is either an interior point of ond of the y's or the common end-point

of two adjacent 3,

Also o, WE\g.dlgf_r%ﬁhbrary org.in
1.
and (E’l + E)= E)’r
Thus m{K+E]<m(E)+mea)+‘
Therefore s WA B+ Bg) = m, (By)+m, [ By)-

V1. Definition of Medsurable Sets, If m,{E)=1a,{E}, then E is said tobe &

measurable set, and its measure m (E) is their common value.
Ti is clear thags i I is o measurable set, CF s also measurable. ‘
The measurebf a finito pumber of points is cbviously zero, sinco the oxterior

m(,asure 1‘.{2(-1:0
\h@r & counfubly infinile linear set of points is of measure zero.

Let be the set of points x;, =3, ... -
\TaLe the arbitrary poantue ¢ and enclose x; in n interval of length | 2°

\ ’2’2 in an interval of ]ength o2 and ac on.

=]
Thus m B) < e?_,2—r <
Therefore the exterior measure of this set is zero, and the measure of the set

i3 also zero,
If B is an interval (a, f) in (a, b), it is measurable and ils measure i [f~a)

For we must have m,( > - «, since tho interval (a, B in itaclf a poasible

interval for the exterior measure with the definition given above. '
And the Heino-Borel Theorem, as in (11}, showa at once that the sign of

inequality is impossible.
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Agnin it isaclear that
m OBV —a) - (- a)
But the sign of inequality ean be omitted, for it would givo
Boaaib-a) (ORI m R,
and we would have
m (EY <l &),

Similatly, if B is the sum of « finite wuwaber of wot-overlnpping intervals, 6 is
measurable, and its measure ix the sune of the lenyths of these fnlereals.

In the discussion which follows it will be scon that the sum of 4 finite, or
countably infinite, set of measurable sets is measurable. Thus starting with
countable sets of points and countable sets of intervals, we see that oped %Qs
are measuralide.  And as the complement of a measurable sct is m(gwra’ble,
closed sets are also measurable.  All sets which can be ohtained b}-‘d?}dltlons
subtractions and multiplications, finite or intinite, of measurabl@ SBty are also
measurable. ‘0

It is only for measurable sets that this theory of mead@s studied. Tt is
still & debatnble guestion whether, and, if so, in what sedigh, #ets which are not

i \
measurable do exist.* l \Y

5. A Necessary and Sufficient Condition that,a~ Set E be Moasumble‘r

Auccessary and e,u‘ﬁimwwgm,%ﬁi{aﬁ{,gl 14 qj sPI{l E D e T h be aneasurable
is that to the arbifrary pusitive € there shall (r;rrc»,pmul @ sef I consiating of @ finile
number of intervals and two sets ¢, ¢ ry" P.L!ﬂnr:r meraanres <o g, such Thet

I 1, a" —e"

{i} To prove that this condition i is Hecessary, we note that Lo the arhitrary e
there correspond the sets of x@t- dverlapping intervals ey, ¢, ... for & and
By B2y - Tor CF, such th‘w

\ mE : L 1< e+
\ 1
MY ‘. mOCETN B mCE ke,
N, } 1
and ..\ﬂ\ mE+mQE=b-a.
Thus \\\“‘ ;u,_ S8 <(b—a)+

BJ.\, aa in § 4, I, from the sct
x’“\\} 7 L. J'?ls iy, 182! B N ﬁn,

& obtain a set of not-overlapping intervals
Yo Var e Vi

such that >_: Vr= < ﬂr S .Br - X (e fh
1

*Cf. Lebesgne, Legons sur Pintégration (2° &0., 1928), footnote, p. 114

1Tn this and the fullowing sections, we shall, when convenient, write m& instead

of m{E) for the messare of E. when B is measurable, and similarly w, E for (Bl
m B for m;(E}. .

It will be noticed that, when ¥ is measurable, mE =m, B =m.E.



48] THE DEFINITE INTEGRAL 337

the last Lerm on the right-hand side comprising the parts commeon to an a and
a f2 bloited out in forming the s,

As n tends to w, 80 does N and we know that i yr=(b—a).
1

Thus the sum of the lengths of the finite or countably nfinite set of not-
overlapping intervals blotted out as aboves is less than e.

Now take % g0 large that X, < ¢, and denote the points of a,, ay, ... &, by
n41

&, and the points of oy, ¢y, ... b0 © by By "\
Then BE=8,+ B, 8~ 8,CK. N
Also R, B < B, and 8,0F < the points common to all the a's and ‘B8
Thus my(RuE) < € and my(S,0F) < T(af) <e. O
(ii) Tf the condition is satisfied, & is measurable. PAY
We have E=I+e—¢", \ 4
where [ consists of a finite set of intervals and ¢/, & a.re'\t-ﬁ'o sets of exterior
mensure < ¢, which we suppose have no common poiss }

Thius E<I+e, D
and meEém,(I-{—e’]-(ft\f’cke.
Alzo Ex=TI-el)
Thus CE W{'ﬂg;’aﬁﬁﬁﬂ'ﬁ; org.in
Therefore m OB = m, (O + ") <ml+e
It follows that  m, B +m,CE <mI +mOT +2e= (b —a) +2e.
And _WE < mE 2.
Thus ...< m B = mE.
But '\ mEZwmB.

\\ msE = m;E'.

Henee N
6. I If B, B, are measurable, 50 is By + By
We have fo Show that E, + B, can be broken up as in the thecrem of § 5.
Given.)‘\he'\a-rbitmmy positive e, we have
’§ 4 Ey=f+e -,
N\ Engg'f"eg' _exn’

:““i}“”/;‘fe 7., I, are sets of a finite number of intervals and m,¢," < {e, ote.

L
\ 3} Thus Byt Eg=I+Iat(e/+eg) ¢,
where ¢ iz contained in e, +5"%
L .
Also mn, {61’ + 92’} g maelf + maea' <

’ ¢ L "
and mge” = mg e L e ) Eme,” F e <

Thus B, + K, is measurable.

IL. If B, and R are measurable, 50 is By - F,.

We Imow that C{Ey - By) =0F, + &y

Thus O(&, ~ £} is measurable, and E; — B, also.

11, IF E, and B, are measurable, 80 i3 E\E,.

We know that C(E, By} =O0F; + CH,, and the result followa.
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7. 1. If Bpand B, are measurable and withowt common. points, then
m(E + E=mE, +mFE,.
With the sainme notation as in § 6, we have
E =1 +e/~2",

P e
) Eo=fy+e"—e,",
where me;” < 1e, ete.

. IT

Tl E v By I 41,40 40
and m{E, + By=m (B + E)<m(f 4 1,) e
Also B+ E,= I+ 0,—¢", where & wip” - 00, ‘::\
and E, + EN = O+ Ty -y =L 1 L) 46 N\ -
Therefore m((E - Ey=mC(E +E ) < m{I 1) ee (N b
and m{E+Ey=md 1) -« ~‘ R
Thus | m(E, + By —m-(z'l + Iz} |<we. o ‘...:\{'
But for the finite sets of intervals it is clear that v
m(l + I)=ml +mi,—ml, fo \J
Also sinee E < Ii+e, mb;< mI1 \}‘e
And since E,=1,-e" 0" Q"
dbraylipeyeT in,
we have as before mk; = m.f;,\%c
Thua | mE L2 'mf | < de
Similarly ] Ez—m12|{§c
Again I« Tiﬁ-\e and I, Eq+e¢,”.

It follows that T JQ\N" Byt Biey’ ey (Bytey”)
‘Cel “+e,”, wineo EIEZ_O
Therefore tﬁ»{l‘ Iy S=mfe) +e"y Zme,” +imge,” e
But {um(F, N},;) —mEy ~mE,|
\*' Slm(E +E)—m(I + I+ mid + 1) - mly —miy |
+mI, -mE |+ |ml,—mE,|.
Thﬁg@ |m(E, + Eg)—mE, —mE, | < 3e.

\}i; follows that m(E,+ E)=mE, + m¥,.
T'his theorem is a special casc of the following :
1. 1f E,, E, are measurable, then .

By + By +mBE Ey=mE +mH,,
For Iet E,=E E,+¢; and E,=E. F,+e,
Then e, e, and B, E, ate measurablé and without common points, and
B+ By=e v e+ BB,
But by (T} mE;=mE E,+me,,
mE,=mE E, +me,,
m{Ey+ By)=mie; +ey+ B E)=me, +iney +mE By
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Therefore (B + E)+mE, E,=mE, +mE,
L IF B, and B, are measurable and B, > E,, then
w(E, — By)=mE, - mE
We have (B,-E))+E,=E,,
and (%, — F,}, &, have no common point.
Thus from (I) the result follows.
8. 1. If B, B,, ... arc measurable and without common points, then E = z,E
{5 megsurable, and mEB= EmE N\
Bince K, +Ey+.. +En is measurable and contained in (g, b}, we «hm;&, for
any poaltlw integer (by § 7}, 4 }
(3 B =EmE, <(b-a). N\
< }

#%4
Thus ZmE, =(b-a) 'W§\'
Taking the arbitrary posntwe & there ig a positive mteoer v such that
mE  +mEy .+ . L <, T&J’lb}"‘n =
Now for F,,, there is a set of not-overla-pﬁﬁng intervals @, r 12 Gnyroo oo

guch that N
W = S RN PRI

Also the countably infinitc set (}ﬂu’iter\ uls
E%_;.l 5 S“3‘1"&4—2 g e

are such that o~ {K .
‘Q;lﬁ';zn +Eqat) 4,21 EE nygr.s)
O o €
\ .\’g}’ N <r%1(m15’,?+, + 2,,)
\ ~ < €+ €
ﬂ)\l}\ketl S, —Z B, and R, lZFZIF,.
'lh\n meE_ms(S + B =mS,+m,By,
PN < m8, +2e
#\\But % > 8-
‘ Therefore m.E = mY,.
Thus i, B < B 426
It follows as before that m B =mE.
Again 3 Y E,=mI, = mE < mSy+2¢ when nZ= v,
Thus 0= mB~mSy, <2, when n=w
and mE=lim };mE = 21: mEy.

gimem 1

I1. If the measurable sets By, By, ... have common poinis, then B —;E’ L

measurable.
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For any integer n, we have
Ei+E+...+E,
=B (B, - BN+ (B, —E, - B+ ... H{E, -, - ¥, ... -8, )},
and the different sets on the right-hand side have no common points.
‘Thus B+ B+ tow =E£4E44... to o,
where €=E,, ond E=E,-K -E,. -E_,, r=z3
and i::&', is measurable.

9. 1. Let B, B,, By, ... be all measwrable. Then K- E, - E, ... is measup,
able. ¢ \:\’
Fhis follows from § 8 and § 6, II. ¢ ~\

IL Ifinaddition E,, E,, ... are all contained in E, and have no a"fwamrm v poTnts,

"4

m{E - LE j=mE - Zm,E N :
This follows from § 7, III and § 8, L. '"’\
0L If E,, B, ... gre all measurable, then E=E, . I\., ¥, ... 78 telso easur-
able.
Wo know that C{E,.E)=0CE, +Cf€,;\
C{E,.By. E)=0R+CH +L’L’§,' and so on.
Thus C(E, »Byw E’Qral}lth}‘}i QEGIDCT .

and the result follows at once. AN
V. If B, By, ... are all measum@?g?and B\ E,<Ey<..,then
BB +E,+E;+
ig measurable, and mE =lim {’mﬁ'ﬂ].
In this case ‘ v
BB +(Ey- B+ (B — By) +..

and :f\mE =lim zm(E ~E,.;) by §8, 1
“; \ f—=x;
\},.‘ =lim ?(mE —mE, ) hy §7, [T
\ =lim (mE,).

W\Y\Jf E,, B, ... ore oll measurable and E,> E,> E,> ..., then
/ E=E, . By . E,...
15 measurable and mE = llm {(mE.)
We have ag in (III), o
Mm{CEy=m({CE,+CE,+..))
=lmm{CE,) by (IV).

And mE={b—a)-m{CEV={b ~ e} -lim (mCE,)=lm (mE,}.

10. A necessary and sufficient condition that the bounded function f{7) be
integrable in (2, b} according to Riemann’s definition is that its points of discon-
tinuity form o set of measure zero,

Q"
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We prove first that this condition is sufficient.
Take the arbitrary positive ¢, and & < 2———(; &y

Tet Gy be the set of peints of discontinuity at: which the oscillation* =

Then the measure of this set is zero since it i & part of & set of measure zero
and it iz a closed set.t )

Thua the points of &7, can be enclosed az interior points in a Fnite set of not.
overlapping intervals, the sum of their lengths being '.—<_2*——'( -’I;— s whefo\3
and m are the bounds of f{z) in {a, b5 A

The complement of this set of intervals is a finite number of 'c}aq&:l no-
overlapping intervals, the oscillation at every point of these bpii;g\< k.

Each of these can be divided np into a finite number of pggtial intervals,
such that the oscillstion in each of these partisl intervalax &2 (Cf. § 31.1,
footnote, p. TL) \"

.

Thns we have a mede of division of (e, B) for which,/
- p LN >
S-s< A"(?’*“Hmﬂ-ml?‘,@' m) < g

and f(2) is integrable in (a, b), aceorcingto\Riemann's definition.
We now prove that the condition is necessary.
. N . oh th
Let £, >j¢2} ... and lim k=0, & ] i llljgl‘t"’:[lllgya.%tl _gfigomts for which the
oscillation = k. N
Lot the measure of this closcdwet be € > 0, and take e =}k, L.
Since f(z) is integrable { B}y there is a mods of division of (s, &)
STy By veey Ey gy ¥ =b,
such that § -s<e. & .
If & point of G,.is{'ﬁaiﬂe one of these intervals (£,_y, @s), then the oscillation
in (2, 2 = kf;- ) - th
Tf it coingided with the common end-point of {%;_y %) {4y Z941), the
oscillation $u'é¥ least one of the two must be $&,.
*CE/99Y, 4, p. 66. _
IFo ot P{z,} be = limiting point of . and not 2 point of . The(n tf‘ne
Scitlation at P is cqual to k< kb, and there is a neighbourhand |& — x| Z 7 in

¥hich the ascillation < & But P is a limiting point of @y, so there is 8 point £”

o

W of @y inside {1, —%, ;+1),

and the oscillation at P'= k. Therefore there isa

i ic illation = k, whih i
neighbrurhood of P inside (x -7, T+ for which the vseillation =k, which is

impoasible.

1 i a closed sot of measure zeTo a4
O, can therefore be broken up-into
closed intervals

d (', is thus an open set of mesaure (b —a).
a countably infinite seb of not-overlapping

‘.'.\1, Agy ... and 5 A,=(b-a).
1-
We can choose the positivis integer nﬁﬁa that .
[b—a)—?&,<m- N
The paints of @ are interior pointa of the finite set of not-overlapping intervals
Jeft, when 4, Ay, ... 4y 8T8 removed from (g, &).
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Thus these two adjacent partial intervals give to (S -s) o contribution
== 1k, maltiplied by the sum of the langths of these intervals.

Hence all the intervals of g=w, x, ..., w,_, +£p=rd, which lave a point of
¢, inside them or at an end contribute ko & -5 an amount - ik, (their sam).

But the sum of the lengths of these intervals -2 4%

Therefore, for this mode of division,

S—gm il =,

which is impossible.
Thus C=0 amd -0
But the points of discontinuity are given by the sum

E=f vl tom, "\..'\
and G, S0 O
Therefore (by § 8, TV),  m{£y=limom(fi, -0 . N
N— N
11. Measurable Functions. AN\

Let £ be o bounded meusurable set of poinks nr the axid\gR % The Junetion
flx), defined af the points of F, is suid to be me;usnrable;i&\]? Vi the set of points
of B for which f{x} > A is measurable, for every cons il A

We denote the set of points of B for which A3 by X[z} 4], and
similarly E[f{x) = A] denotes the sot of pointsta 7 for which fr) 1= 4.

We shall now show thatdf &ﬁ;‘%’fﬁé«%ﬁi«&@é?ﬁ ' defined above, the sets

Elfx)2 4], BlAx&EHL Bz 4]
are also measuTable. N\
We aro given that £[f{r) > Alismeasurable.
Then ite complement with riesix‘.et to F iz also measnrable, that is

’\\ T E[fla)=A]

is measurable.

Apainif B, is thedsst of points of £ for which f{x) > 4 -- -l, we know that B,
is measurable. \) "

And the igfiniite/product

e \J BILAZ)=A]. B Fy ...

is meagutable (§9, T1I},

TJJE'I:T‘&(‘:‘I‘C ETf{x)=A4) is measurable.
It follows by sddition of B[ f{x) = A], that B[ f(x) = A7 is measurable, and
by Subtraction from E{ f{x) = 4), we see that B f(x) < 4] is measurable.

It is clear too that, if A and B are any coustants,

BlAd < f{x)< B}, E[AZfle)<B), K{d</[tx)E B

and Eld = fixys= B

are all measurable.

12, Operations on Measurable Functions.

L. Iff(w) iy measuralle, so are a-+f(x}, af{x) and | f{x}], where o is u consiit.
We unow that Eff{x)>> 4 —g] is measurable.

Thus E{ f{x) 46> 4] is measurabls,
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The others follow from the fact that B [f{) > d/a] is measurable, and that
B >A1+ B -
iz meagurable. /i) I+ L/ <~ 4]
b:l. If folx) and fif x) are finste and measurable, then E[ fi{@) > fotz)] is measur-
able.
B f1{%) > f3{=)]is tho sum of the countably infinite measarable sets
ELARY > 110 B fofx) <],
where r is any rational number.
L. I fi(z) and fox) are finite and mezsurable, their sum, d{ﬁ"e;e‘:;m wnd
product are measurable. AN\
Wolmow B[ fyfa)  fofx) > A1=BLf, () > AF fyfa)]. N
Thus the sum and difference of f;(x}, Jifx) are meaaurab!a.l}y (ilj.
Also if f{z) is measurable, so is ( f(z})?, for B[( f(z)]® >{d}is equal to
E[f(2)> v AL+ B{f(z) < ~ o/ '
Thus ( fi{x) +/5(x))t and ( fi{x) —Fule)) are E{egsumble, and the result

Q"

follows, s

V. Let fi{2), fol2), ... be an infinife maﬂg(o?i;}dsequeme of measurable functions.
ti’;};:n,fw every ¥ i E,ﬂ]in:u fﬂ(:a;)v%“xi\ﬁtﬁ 7k ’ﬁ%s}gaaf{pgt‘@ Igéujl rtlfafis limit is measur-
For example, for every z in B Igt;};}(a:} < fol®) < folw) <.
Then EY lim f,(z}> 4] is thelgum of B[ fy(z) > 4), B[ f3{x) > 4], ..., and
T+ NS

this sum is measurable (§ 8],
V. Let fi{x), filx), ..‘.':!:’Je an infinite sequence of mensurable Junctions. Then
lim f,,(x) and lim fi(2} exvist ( finite or infinite), and these limils are measurable,
f—ro0 p

Suppose b, (&) %6 bo the upper bound of fi{z), f4(%), Sal®) ... and $y() to be
the upper ‘bnilﬁd of fo{m), fo{x), ... and so on.
Then,..[ $.(2) Z bol#) = fula) ..

AJsg liz fy() = lim o)

) .Q;lfi' this is measurable by (IV).
NN VL Let fi{w), fal®), ... be an infinite sequence of megsirable funcéions, and
. .
\ lim f,{x) ewist { finite or infinite).
—m

Then this limit iz @ measurable function.
This follows from (¥}, since lim f,(#)= lm Jolz)=lim f(z).
"D H— R
We note that every monotonic function is meagurable in an interval; and, in
particular, that f(z} =constant and f(x) =% are so. Applying 1the above rcafllts
we see that every polynomial is measurable: and, a2 a continuoua funct.lon,
by a theorem due to Woeierstrass,* is the limit of a sequence of polynomials,

*(f. Hobson, Theory of Functions of & Rewl Fariable, 2 (2nd. ed., 1926}, 225,
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wo seo that every continuouas function is mensurable, Then discontinuons
functions, which are the limits of scquences of continuous fimrtions, are also
measurable; and so {o more complivated elassea of measuralie Tunctiong,

13, The Lebesgue Integral. Let (¥} be a bounded and mensurabic function
for the measurable set & contained in (e, b).*

Let 4 and B be the lower and upper hounds of f{«) in /.

Divide the interval (4, B) on the axis of y into = partial intevvals

(A, 1), (G b oo (s Bl
Denoting 4 by I, and B by I, we thus have the mode of division of {4, B),

A=l by oo by gy ln= B, ‘O
Let 2, be the set of points of B for which i, 77 fle) =2l or=1, 2 ...'\uik -1,
and e, the set of points of B for which 7, = f{«} . {,,. p n’.’;
Then e,, e, ... e, are measurable sets without common }_lﬂii'lhj.’:: :
Form the sums & and ¢, where '»\\\

S=%tme) and 5Tl mied

1 1 ” 7
mie,) being the measure of the set e,. ¢ \
Then SZ Am{E) apd &= I}m(\f'} .

Thus the sums § and m?&m%ﬁﬁﬁ%&*gg@@fﬂ“vismﬂ af i1, BY have a
lower bound J and an upper bound I, respectively; and for the ssne mode of
division § = ¢, N

We shall now show that = .

Tet some or all of the intcr\-'a}ég'(lr_;, Lyin fy, 1, ... Iy_q, 7, be divided into
smaller intervals, and
.10-’\3'\.13 Agy oon Aqlp By e
be the new mode of divigionof (4, B) thus obtained.

This mode of divisigAi®said to be consceutive to the former.

Let its sums, as Abéve, be X, v,

Compare, for gx@m.ple, the parts of § and Y which come from (4, £;).

From X »Qh&j&e
o Agmie )+ Agmie ) .. i m{ey),
where ey} 8y, ... e,z are the sets of peints of & for which
~O° =@ <hy, Ay Zf (=<1
NAnd epTme kg e g

the zets on the right-hand having ne common points.
Thus Aamie )+ Agmle ) oo +lmie ) = Limle )
It follows that £75 8; and similarly we have o S s.
Now take any two modes of division of (4, #),
A=1, 1, oo L plp=B, withsums Sand &, ...oooooerreennns {t}
A=l 17 . Uy 3, o= B, with sums 8 and 5" oooovveeeeiinnes (2)

*Tn this section, so far as pessible, the notation corresponds fo that of §§30-41,
Bp. 91-4, and the argument proceeds on exactly the same Hines.
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On superpesing (1) and (2) we obtain a third mode of division {3) consecutive
to hath (1) and {2}.
Let ity sums be 2 and .

Then S8ZY and c=s,
Bnt Z=on
Thus =4,
and the sum § arising from any mede of division is not less than the snm
arising from the same or any other mode of division of {4, B). QY
It follows at onee that I=J, N

For suppose I >J. SinceJ is the lower bound of the sums 8, t.[lP\;‘E? m\ust ba
a mode of divizion giving a sum & to the left of the middle point.of Jf, and
since I is the upper hound of the sums s, there must be a modeyofdivision giving
a sum & to the right of this middle point. This is imgbssible as o sum §
cannot be less than any sum &. ‘.‘.\\

Xow let ¢ be an arbitrary positive number, as smalhas wo please, Take a
mode of division AL
A= I, by .. In_i,,k,,h&B,
in which all the partial intervals are less thgm},

For this modo of division it is clear thaby"

0= 8 — o =1, ~himley) + T MREIULIRIAGY 8 (e} < em( ).

Therefore we must have I =7, angd the sums S, s tend to the common value ¢f
I amd J as the number of points 0j' division of {A, B) tends to infinity in such
sway tht the largest of these pariial ntervals tends fo zero.

This number I is callédehe Lebesgue Integral of the bounded and measurable
Sunction f(z) in the .m%;gamble set I, and we write

O 1=| s

If fiz)=C }n ;E, where O is @ conslant, we deﬁm\ j‘IJr"(x]u:'t'ar as Cm{ E).
.’\“ I - .
If. B onsists of all the points of an interval (i, b), we use the ordinary nofation
\‘b ﬂoa}d;;, and the integral is now called the Lebesgue I nlegral of f(x) between the
S Y
o limits o and b. . ] ’
»\3 " Qometimes it is convenient to make clear that the integral is taken in
N\ Lobesgue's sense by placing & capital L before the ordinary symbol. In such

(!
a cage the Riemann Integral would be written a3 (R \“ Slx)dxand the Lebesgue

if
Integral as (L} ~ flzz, .
s . . ay
Again, if the bounded funetion f{2) is integrable with Lebc.sg.ue' g .deﬁmtmn
for the interval (g, B), we say that it is integrable (L) ; and, if it is integrable

with Riemann’s definition, we say that it i in'tegrabl.e (.R)t »
We shall ses below that for bounded functions, if /(&) is integrable (&), it ia
also integrable (L), and the two integrals are equal: but that f{x) may be

integrable (L) and not integrable { &)
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Just as in the case of the Riemann Integreal, we define the Lebesgue Integral
‘b { g
}af(x}dx for « = b, by the equation | }j'(xjrf.c — - \ Flekdr,
I i)

14. Properties of- the Lebesgue Integral of a Bounded and Measurable
Function.

I [ Ofte)de =0\ floide, where Cis a consfunt,
J s
This follows at once from the definition,
L. If f{x) is measurable in K and f{e} 2, then \ FATSI TR N EAR
A

Since we have for any sum & for /), & i &), e

Therefore the limit of the sums 8- Cin £). p

A similar result holds for f{x) 72 €. Dt

Thus it is clear that, if A A1 are the lower and upper l1ouml \;f f Vin F,
then

"
Am{Ey = \ Slaide Z Bl K. )

111, Let flz) be measurable in K, and lel £ 1+ b;,f\z’,‘;"sa-krrc B and Ko are

measurable and without common points.* \ Nt

Then L&%}%ﬂql(ﬁ% ry J{(‘g {I‘l’)d £
Let the bounds of flz) be 4, B in_ ul, Aoin By oand g, Ja in By
respectively. \\

Then A ig the smaller of a; and ay) % lﬂlt Bis the larger of f; amd [,
Consider any mode of divisiopfhi4, 5,
(N A‘\?o, foo o by gy = BL
If two of these points \not coincide with the smaller of the s and the
larger of the &’s, by intreducing these points we have o conseculive mode of
division and & is not/ mp‘rem:t,d # not decreased.

Thus the aum Sior {1} = a sum 8 for E 4 asum 8 for &,
;"\:” ’"‘\ f(.r d:c+\ f(,r)dx

L\
Therafors E Flaye: _\ S \ S
§1mhu.rly from the sum s,

vV ! Flaydo \ j'{;l)d:r-}-\ Sz,

Hence Lf(x}dx:){f(x)da:ﬁh Slwdda

IV. The theorem of (IIT} can he at onee extended to the sum of # measurable
sets with no common points, two by two.

We now prove that it holds also for o countably infinite number of measur-
able setz.

*It is clear that if f(x) is measurable in E, it is measurable in &, and Ey for
B\ [ f(x} > ] is the product of E [ f(z) > €] and £,.
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Let ['(z) be mensurable in B and 1= fEr, where B, E,, ... are all megsyrable
1

and withoul common points, lwo by fwo.

Then ( Sade=3 fa.
15 Ule
Tet E=3E.+R,
L
Then we knew that f{z) is measurable in B, and that m{R,)->0 a8 n—+= (§8).
But [ flaydze = J Flx)de + [ f (). O
. L\
Thus ] \E Flayde— z\ Flx)ds I??T—é Mwm{R,), by (I0), abowg,
! 1%, « \J/
when | M| is the npper bound of | f(x}] iz &, (":’«:
Therefore { Sz =§.l Tz, »"\{"
Ix 1., <)

V. If f(z) and g{x) are measurable in B and f (x}\:‘iz: J(z), then
REESI

Let (A, B} be the buands of g(x} in B ahﬂ A= Il =8 an_y mode

of division of (4, B). W dbrauhbrar
Let ¢4, €y, ... &, be the aets of pmnts agin § 13 or g(g) s 1.e. g is the set of

points of B for which I Syl ), whenr=1,2, ... (n— 1), and ¢, is the set
of peints for which 1,_; = g(zf) =1,

Then | dwa=3] semie= 31, onten,
since g(z) & fr_y mk\and therefore f(a:)"l,-._
Thus Q) L () Z any sum ¢ for g(z).
It fon@s»;"tim - ‘ f(z)dxé'[ g(z)d.
\zm Fle) and g(z) be measurable in B, Then .
,\3}' [ s+ glmpda= I, fiavts | gtz

- (i) Let g{z)—=Cin E, and let 4, B be the lower and upper bounds of Six)

asin§ 13.
Let A=l T, oo by,
for /(). ) ,
Then f{z) + ¢ haa 4 +C, B+ for its bounds and & +&, L+ €, -
a mode of divizsion of the interval.
If & and & are the sums fur_f{:c)+ &
=8 + Om{E).

On proceeding to the limit, thls gives
{ ( flze)+ Cdx j flxydz+ Om{E)= \ fl x]a,w\ Cdr,
JE

I, =B be a mode of division of {4, B) with sums § and s

a1 Cia

for this mode of division, we have



348 LEBESGUES THEORY OF [APP. i1

(ii} With the same notation as in {i) for f{=), let
A=, .4 5 =B
be a mode of division of (A, B), and let e, be the set of points of E for which
Ly =flxy <l whenr=1,2, ... (n—1),and e, the set for which I ;= Sz} = o,

Then | (7@ +oande = &| (@ +gtanis
= :\ Urat e
¢ ! e
=}1Jl _ ey +\_,\ g(sc) TR ;.\.\
=85+ i\ g(x)d‘x’ l‘;}‘

Sy ~

where §, s are the sums for f(=) for this mode of division. m'\ &
It follows that AS

| () ratendzz=] pende+| otaged

Again } {fi@)+gla)lde = X V (l % g(\]ﬂfr

and from this we see thaprww.d brauhbra{‘g.:?l g.m
A N
L( fiz) +g(x))dx§j;f{;i}dx~;—Lg(x)d&:.
Thus we have ¥
| fffx)+g(z1 s st gae.
It is clear that we a.lso }‘é%
| l\f;sﬁ slends=| fis-| gt
VII. Letfiz) be‘nieasurabie in B. Then

O
Q |, r@a| = |se |ae
This Jall»uwa at once from V), since
O - [f@) =@ = f)]

I1. Let fix) be measurable in K and g{x) be bounded and equal to fz) el all
points of E other than points of a component B, of B whase measure is zero.

Then ' ~ f(x)dx:[ g(z)d.
L¥ 3 JE i
Since g{x) is also measnrable in E,

[ fea-| otan=| (fx)-g(@naa

= (/@ ~gtands
=0, by (11}, since m{¥,)=0.
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15. The theorem of this section s of great importance in the application of
the Lebesgue Intogral,

L. Let fo{x), fofx), .- be a sequence of functions which are measurable in & and
nerd recgative,
Also led f,(2) be uniformly bounded* in B, and lun f,,(:c] =0, for every point
of &.

Then lim [ Sulmdz=0.
n—wlE

]

Talke the arbitrary positive e.
7 \
Let E, be the points of £ for which fi{z), fi(z} ... are all < ‘{ B,l\

£ 5 the pointe for which fi{z} = 2m { Tm(Ey and fiiz), f,(:c),\ ‘all <3 m( 5y

£ the points for which fyfz) = SmiEh ( ) and fy{x) “f\(‘a:]. . i’};ffj;
and o on.
Then &, E,, ... are all measurable, by §‘E’,x .Q{,de no two of them have

common points.
Fivery pnmt of EE‘,. is a point of K+ and, since lam f,,(:) 0, every point of &

is a point of ?'F,-T W\»fw»d'bl aullbrar_y org.in
Now we are given that fﬂ(x) 1s‘u,mform1y bounded in £, and that it is not
negative. NN

Therefore there is a posgitive number K such that 0" f{z) < K, thosamo K
serving for every z in E\md every positive integer n.

But \\E 2,3, and m{E)= Em[Er]

Therefore we Jan choose the positive integer N, so that

\ zmw,MgK
b’g\when nZ N, f,,(x)-.’. { By for every point in By, By, o Fo
») i‘hus E:\ j fixide =, _(—E) a-”‘( g,

<}e, when nz=N.

*Bee footnote § 67.2, 1L, p. 140,

Let x b oint of B. ] o
';‘hen i'eek::ln{vihat lim Fuolx)=0, and theteis & positivs intoges » such that

, when n 2
o f"(x}{ m(E} lity for the point in
The smallest integer » which will satiafy this incqua.
question is supposed taken.
Then this point  is & point of Zu.
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And \ ACEES S \‘ m(E,).

r—\+]

< e, for overy .

But \Nfﬂ(x)tix: 3 L flz)d.
Therefore 0= \ Faledde < fe+e, whon niz N.
- &
Thus litn l fﬂ w)dz =),
te—em G N R
We can now prove the following more general theorem : R \...\
IE. Let fi(x), falx), ... be a gequence of functions measurable in E. O

Alsa let f{x) be uniformily bounded in E, rmd hm j (xy—flx for &u}? J pomt
zof B.* 09

Then ]1m\ FRED o’x_\ Sz, ’\\

—ran - K

Since [ ol | < g, \
the same constant K serving for every xin £ and ew,ru\{\.ﬂ it follows that
/(@) 1?’-K and | /() /o S2K.

Let ] f l ﬁg}c&)&'
Then Fyfz), Foiz), ... are' ormiy auu & thoasurable in E, and not
negative.

Also lim Fy (.2:) 0
n-rm NN

Therefore, by (I, lim E,\Lf (2) ~ /(2=

It follows that ) ]§ S { f(x) = fola)de =0,

Thus N lim ! fﬂ(x)d:n:[ Flx)de.

\ it n—romdE 1=

The theorein proved makes tho guestion of the possibility of term by term
integration ok infinite series much simpler to answer when Lebesgue Integrals
are useday

Let ‘hhe’flmctlons (), #,{x}, ... be given in an interval {a, &), and the scries
Z‘K (x) converge o f{x) in that interval,

If {7}, uy{x}, -.. are measurable functions, we know that f(z) is also measur-
able.

If, in addition, we are told that s () ia uniformly bounded, this theorem
establizhes that

" fapde=tim [F’ s, (@),
Ja m— o i

and term by term integration is possible.

* Weo know (§ 12, VI) that f{x) is meazurable and bounded, and therefore
interrable in &.
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In the ecase of the Rismann Integral, we have t6 add the condition that
the sum of the series be integrable,*

16, If f(x) is bounded and integrable in (a, b) actording to Riemann's definition
af the inlegral, then its Lebesgue Integral also exists and it £5 the same as its Rie-
aswann Integral,

Let £ be the sef of points In @ % 2 = b for which f{) > 4, any constant.

Then if = is one of these points and f{z) is continuous there, = is an interior
point of &, with the nsual convention ss to the ends x=c¢ and 2=, )

And if f{z) is discontimwons at this peint, it is a point of a set of zero mea-mh'e.
(C£. § 10, above.} A

Thus & consists of an epen set and a set of zero measure. )

Therefore & i measurable, as it is the sum of two measurahble 5&5

Hence if f{z} is integrable according o Riemann’ sdeﬁmtlon, it is measurable
in{a, b} and its Lebesgne Integral exists, since f (x} is also bounded

Kow let =y, Ty, Ty, o+ By_y, £ =b be a mode of disision of (, B).

The sum &, with the notatmn of Riemann’s Integzal, A8 given by

s=p, {1, — o)+ tg{iry — 2} .. -!\my,{x —~Fg )

Also fix) Zmy in (z._,, 2.} '\;'
Therefors (L) { f (x)dm = m‘r(xf T )

where I denotes that this 1s‘fh‘é"lﬂh‘ﬁgﬂd1h1t&ggaioﬁeg this intervel,
Hence 8“? [L)' Sz,
Sirilazly o~ 8= [ fixa.

Since the sums & @nd} tend £o their common value, the Riemann Integrai

\ f (), it followrs\bh}tt for a bounded function integrable { B) the twe integrals

are the same. ot
It i3 eagy }}o give examples of bounded functions integrable (L} and no

integrabld{ B).
g f ’}\i] for every irrational value of # in 0 = 2= 1 and f{x) =0 for every

ratd'bn 1 value.
rf{‘hen its Lebesgue Integral f (x)de=1.
" Rut this function is nab mtegrabla {R).
17, The Lebesgue Integral for an Unbounded Function. In §§ 13-16, f{z} has

been supposed bounded in the bounded and meé.su'mbl? s.et E. Theldeﬁnfition
of the Lubesgue Yntegral is now modified, so that it will include a class of un-

bo}ll'gizdﬁii:c:ll;nzwe when flx) =0 in B, and define an suxiliary function .l

Tl as Lollows Jolz)=F(=), ab all points of E, where f(x) =
—u, at all pointa of %, whers f{z) > n

(Cf. § 14, VIIL)

*(f. {footnote on p. 161
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The number » iz any assigned positive number.
Then f,,{z), for every », is bounded and measurable in #,

Also N Fo{x)dx exists, and is a monotenic increasing funetion of ».
K

Thus[ Julw)dz either converges to a defiplte lirit, er it tends to 4 w as
Y.

>,

W hen the limit exists and is finite, the integral | Fla)dx is defined by this limit.
S B y

When f{z) =0 in E, then the in fegmlg Flz)dr is defined as — { VFle)da, whin \
Y3 A

this integral exists and fs finite. ’ \:\
Again when f{x) does not keep the same sign in ¥, write £\
2f (=)= | f(=)| (=), G Ny
of ) = | fia] - Sz, RS
80 that, f,(x) =f{z), at all points of ¥ whero f(x) = 0, and it var@hc’s ab all other
points of £. )
Similarly fiiz}= - f{z), at all points of & wheve f{z} Z0, and it vanishes at
all other points of K. :‘\\:

When \ Jalwidx a-nri\ Sateydx exist and are ﬁnﬁg,’?ﬁgz'inteﬁjr&i\ Flrlda is de-
K JE N W SE-
Jined by the equation. s dbraulibpary org.in

.\xf(x}dx:. }:fl(:gjfgx: Jlsfz{x)dx.

Alse when a measurable funcliion ﬂ(}vﬁ.ié such that [ Sizydz exisls as o finite
g fu-
number, f(x) is said o be summablenin B,
A measurable function is %lw}ys summable in B, if it is bounded, bui not
| necessarily so, if it is unb unded.
When f{z) is sunmakle i E, it is also said to be integrable (L) i £, and

i the integral \ Jix) d;r\‘i'& called the Lebesgue Tntegral of f{x) in .
JETON

N\ ,
18. Propertiegvof the Lebesgue Integral \ fix)dx, when fi{x} iz not
! bounded. L\ N

I. I.t.is:bbvious that for a summabls function
N\

\ | @e=c| s,

i and that if fe)=gle)= 0 in F and f{x) is summable, then gz} is slso
| surmvmable and

L Fledy = \} glz)dz.

I1. Let fiz) be summable in K and o & _—_EE,,, where E,, E,, ... are measur-
able and withow! common poinis. '
Then | fapda=2\ fizn.
Ju Tk,

It is only necessary to prove this for the case when f{z) =0 in 5.
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Define f,(z) a9 in § 17, and let the number of sets By, Ey, ... be finite, say k.
&
Th -
en [ o ,EL, i,
Proceeding to the limit, we have
13
[ rewe=3] s
x r=1 Fp

Again, when the rmmber of sets E,, B, ... is infinite, wo know from § 14, IV

that A
5 Jalmdz=3 { Funds = 2‘ Folxdx. N
E r=1 K r=1"Ep '.\‘\’
Thus, letting » —+ =, we have NS ¢
[ femazi] sote o\
le b 15 A 3
And letting s ~ ¢, we have »"\ &
[ ez fmda
= 1.2, \
Bus | e (‘_;[ , S, sini:gj\\};\_fﬂ(x)dx = \A fiz)d.
Thus Fyde =l faxde.
-E'*“’WW\fd']“ariil!ﬁbrary,org,jn
Therefore [_&_ Sz jz(; Fzda.
TIT. Let f(x) and ¢(x) he Stmmable in E.
Then J;}f{x) + gla)dz= \ . flayde + Lg(:c)dx.
It will be sufﬁ?:’@m?f"c-u take the sum of the two funotions.
Let £(z) =% +9(=) and define F{z), fy{x} ga(%) as before:
ag. N '} F, ()= F(x) at all points of E where F{z} = %
x\“ —n, at all points of B where F{z)> .
ii,\.ght-, when f{z) and g{z) are both not-negative in E, it ia easy to verify
Jfhwt Fanle) =)+ 00 F: Pl

&3
NS

N Also flx), gulzh Fal®) and F,,(») are hounded and measurable.
~\J Therefore

\‘:

‘,- FZ,‘(x)frxf__-t_[M £ (s ﬂ} g“(x}d.x?—'EL ¥ foyde.
Letting 7 -+ %, we have

(:-- F{z)dx =

i flayde+ L.’]‘(ﬂd?—

.

(ii) And the same result holds for the case when f{x) and g(x) are hoth zero

or negative in E. o B
(i) Now let fiz) =0, gla) =0, and Fix}=f(r)+9(x) Z={in &
Then Fia) -+ i) | =7

and E ‘_f(x)dx: L Flz)dx +L: | g{x)[dz:L Fiz)dz - Lg(z]dz.
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'(iv) But when f{z) and g(x) do not each keep the same sign in £, we can
break up E info o eertain number of measurable sets without common points
fwoe by two, to which we can apply the results just found.

For example, with the notation of § 11, the points which belaong to E[ F{x)Z0]
will come fram the following products:

E[F) 70). E[flx)>0L Elgix)=0]
E{F(r)- 0L B/@@)=0). Klgla)=0]
BIF(x) 0L BLfin =<0 Eglx) =),
E{F(x):70). E[f(z)=0]. Elgx}=0

E{F(z) =01 Bfix)=0) Elg(x}=0], '\o\...\'
E[F(x) =01 Elf{}=>0L Elglx)=0l

and simifarty for the points which belong to E[ F{x) < 0]. N
Denote these sets by Xy, B, ... B

Thus [ F(m)dx::§ \ Fradde,
LA Eim I

It

e
) e, {i
(], el o)

= E flxide + \ﬁ\;{xjdx

libi'dry org.in

1V, With the notation of‘g‘ﬁ“'\x f'altl\'tg, f Ve

[f{=) 1_):1. +f2 ).
1t follows from {I1T) that, sff(x}w .s:um;wb?e V()| fs alen swiinable, and

| 1re \rfaé\ Fmre| fiov.

Thus the Lelwague IMUM of an wnbounded function iy an @hsolulely con-
vergent integral. ,

The theorem of 51(3\ :{pplies rlso to the case of nnbounded functiong, with
some wlieration WMl conditions as there given. Term by term integration
is permissible Sﬁ\jlhis case alse, but for the discussion of this guestion and a
fuller trez\t\ﬁ teht of the Lebesgue Integral reference must boe made to other
worlis® 4

13. “}}ouner s Senes using Lebesgue Integrals. Defore discussing the con-
rc'nceo[ Fonrier's Mevies for i), when the cocfficients are Lehesgue Tutearals,
l we must prove the Riemann-Lebesgue Theorem (Cf. § 105, p. 871 Hor the case
- when /() s summable in { —#, =), and in doing s0 we regutre the following
| epproximation theorem:-—
' _ If 7} 15 swmnnble in the interval {a, b) and e is an arbitrary positive nwmnber,
there s a continuous function &z, swch that

RTINS

=Cf., for examuple, Hobaon, Thenry of Functions of @ Real Fariabie, 1 (3rd ed.,
1927}, Ch. VIi, and 2 (2nd ed. 19243, Ch, V,
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) This imporfant approximation theorem is obtsined by proceeding from
simple measurable funciions to the general surnmable function.*

(i) Let  fix)=11in the interval (a, §), where a <a < f < b

=0, in the rest of (a, §).

Take o —¢" and f+¢ on the interval (a, b) between x=ga, x=0¢, and x=§,
x=~4 respectively, where (< ¢’ <C¢, and join these points to the points r=a,
#=1, and z=§, y=1 respectively.

Then if p{z)=0ina<zr<a—¢ and f+¢ <x<h and ¢z} is équal toithe
ordinate of this broken line in @ —¢’ 2= 2 < § +¢', we have a continuous fupction

satisfying % &
b N
1a (=) —plx) |dr<e W
(ii} Let f{z)=1 in the finite set of not-overlapping intpr’jrz;]a 51, Ay .. Ay,
all in (&, b), and f{x) =0 clsowhere in {a, b}, R

Also let ¢z} be the continueus function obtainedNin (i) such that, when
Fi{wy=11in A, and zero elsewhere in (g, b), weo have\ )
PNV

[ 13401 - rleplais s,

Take W \? \(«f)d;_l‘ai:é??f ﬁ:’ra ry.org.in
"Then we have N

I [Z L= - (,f:(xl{ d‘?zi—: ?.: [ ()} — dolx)|dr <e

*

tiif) Let f{x)=1 in 2a éeasurable set £ in (¢, b) and zero elsewhere in

(a, b)- +$ )
"Then a set of nottgwerlapping intervals &, &g -
that the points ¢f\E are interior points of thesa intervals or end-

adjacent intefvhly; and
:t\'"’
2\
A&tﬁew is » positive integer N such that

m(E) = & i) <miB) +e,

., all in (=, B), exists such
points of two

m{E) = i:: m{A} < m{E) +}e

oY
2 \¥, -
k3 )
\ s and },Im{é.r) < e
Nt

Let fo(zi=1in Ay, Hp, o Ay and zero elsewhere in (@, b

Then by {ii} we can find a continuous function ¢z} such that

b ]

01 - gt <de
Let ¥, be tho points of E in Adr=12 ...}
Then E:'zl: E,-.

#0% Hohson. Iec. cif., 1 {(3ed ed., 1927}, 632.
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Also E: 1 fz) ~fal2) |dz=$L’lf(x) —fulx) | dz
=3[ 1@ -smaz 3\ 1 -
But L,‘ Fl2)—Folz) | dz=m(dy) - m(E,), when r=1,2, .. N.

and B[ 1/ - 1o Emidy), since fu() =0 in $4,.
NEllAy A+l A+l

It follows that Oy
P 116 st 1aa 2 [ S - miBy |+ me) - Smi ) | J\ m(:s,>
" <fetietie , ,V.
since w8y - S (B =S mi B Tm(30) <3Q)
Thus we have \.

\ [ f(2)- (:a(x}ldmg

{iv) 1et B, E,, ... E,, b@m@ﬁmﬁﬂ}aﬁﬁg% no two of them having
common points,

Let f,{z)=1 in E,, and zero elsewhere in [a, b)Y, and fi{z) — < c, Jrix), where
€ys Cgy +.. £, 4¥6 coNstants. L

We find a continuous iunctmn\(i)f(x) a3 in {iii}, such that

[ 154 d:-\{w) | de <

B
Tec[+{eal -t Tou

\<& _
Take : \ iy = %crd:f(x).

2 ]
then N7t - b 1002 8161 10 - gmilie <e.

{v’)uyo‘vjir let f{z) be bounded and measurable in (g, b}.
'W(;if:}i the notaticn of § 13, 4, B are its lower and upper bounas in (g, B), and
a mode of division
A=l L., ., =8B
is taken, the largest of its partial intervala being 5.
Also e, i3 defined as in that section.
A function F{z) is defined for 8 =x=b aa being equal to I,_, in &
' (r=1,2,..n).

A continuous function ¢(x) is obtained for F{z) as in (iv), such that

* | Pla) - (@) | do < e,
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Thon || 1/} ~$(alz =] (/@) - Fio) b+ | | Py - ) e

=3 176 - Fa jdza ] | o) - piad e
< n(b—a)+ie

£
<€, when 7‘,‘=§“(3-:‘_—a‘—)-

{vi) Let f(x) be summable in (g, &) and unbounded. N
With the notation of § 17, we have A o
B " b )
[ ra=) poite-|, sione.
Let fun@)=fiz), when fim S o\
= n , when fi(z}>n, /)
. » N
and similarly for f .{%). O
Choose N, so that .

[} steiae-{ £ s@e<te ma ‘\Eﬁ}ﬁ"*‘ﬁ fo ez < R
Then obtain continuous functions d:l{a:].;‘ér 1 #{%) and ¢ylx} for fy s(z),

such that
W W dbraul phrary.org.in
[* 1 slo) - ) (do < amd | 1o sfe) = bl | <,

and let ﬁ(z} = g, (2} = Py{z)
P\ b
But | [106) - 9(a) |G’ 1771 a0 e+, 1o o) = bt Ve
CE7 o] 1ty sta) 1o+ 1 )=

Therefors. \‘ r | fix) - Plz)ldz <.

20. lxhe\B.mmm Lebesgue Theorem.
(a:) s summable in (-7, T) tkm hm ] HC sin u:cda: =0.

™

s Deﬁnmg J(z) outside (— =, ) by tho equation f{z & 2m) =f(z), we have
-\

Y [ s siwdz=r_iiﬂx) sin nz d
- —\'f(x+£) sin nz dz.
Thus 2£xf{x) sinnxdx:“dr_“(f(x)“f(z"'z))Bin’”’d”
and 2|‘ivf("’}ainm-dzIEK'U(‘I*":,’:)—ﬂx)ld-"-'-

Let (@, £) be an interval enclosing { =™ 7)-
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T'hen there is a continuous function fH{x), such that

! | fle) — ) |de = Le,

T
when ¢ ig tho usual arbitrary positive numher.
Bince () is continuous in. (1g, ), given ¢ there is an y such that

13
[ e+ =iz} | << o
when |k[ = y, the same # serving for every x in (o, f).

b ] Ty
Take v so large that | <y and Lr + 1') < 1

Then [r_" 1/ (x +;) —f) e r [ f( ) - 4,( o ;\ :(z.{.\' \)
b Tt T il P |
<he+dehe 'f;\\.
<&, when w25 \\“

Therefore r}}r:; \ Fie) sin ne dv = \,\

and the proof appliss oqu&*l’h“'{tﬂ‘b‘ a‘j’l(l}:)r @ds}‘;:@f'&:m

Thus the Fourier Constants tend b0, vcro as #—+%, when f{r) iz summalkle
in (-, 7). a)
Corollary., Iff(x) s s-‘rr.mﬁwbl&in ’a'm,r wiferval {a, b), then

jm’l\‘ f{.t) n:«, dr=0.

If (a, b) livs in { — 2 T ), thls result follows at onee from the theorem just
proved, for we roay puL W#i2) =0 in the remainder of the interval { -, 7).

H (o, b} extenda™oeyond ( — =, 7), we apply, as above, the theorem to the
intervals ((m "\ig}, {m+ 1)) in which it les, » being a posilive integer.

21, We \w“ﬁ.pply these theorems to the discussion of the Fourier's Series
correspoitling to the arbitrary function f{x). We replace the conditions
a.t.t.acl;((ﬁ to f{z) in § 105 by the condition thab f{x) shall bo summable {ef. § 17
aboye in { — , 7).

\As beforae, let 8,(x) be the sum of the Fourisr'a Series for f{x) up to the terms
in sin nx and cos B,
Then, if x, is & point in the interval { — =, ¥), we have
sntea) =]t 200 41y - 2oy S B D g,

B111 %

sin {20+ 1}a der
Bin ’

-1 (r +§:T) LS {20+ 2a) +f{wy — 22)]

T A\l
The gecond integral vanishes, by the Riemann-Lebeague Theorem, and it
followa that :

1. The behaviour of the Fourier's Series corresnonding fo f{x), as to conver-

N\
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\‘:
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gence, divergence, or oscillation af o point x,, depends only on the valuss of flx)
i the neighbourhood of x,.

And similarly :

l_I. The behaviour of the Fourier's Series corresponding to f(x} in an tnterval
{a, b), where —w << b << 7, as to convergence, divergence, or oscillation, depends
only on the values of f(w) in (a8, b+3), where 3 is an arbitrarily small
posilive number.

Now let 2, be a point in ( -, ) for which § lim [ f{zg+ k) +7{xg ~ &} oXists.

h—1

We may give f{x) at the point x, the value of this Kmit. ¢\
¢\
147, sin(2n+ L 2N
Then i) ~flea =) ) et W,
where B(a)=fFlx, +2a) + flz, - 2a) - 2f{1-0),"( N
Therefore m'\ &

b o
salzo) —Fiety) :ilu Hla) ?g(_?;}_lﬂ i

A\
+~] N ﬁﬁla{(’\l— - 1) gin (20 + ba da.
wlo NN \sing @
The eecond integral vanishes \arj;éﬁ »r—>w, by the Riemann-Lebesgue
Whww dbrau ibrary org.in
Theorem, as difa) (T'— - —) is sumgtable in {0, f).
sine a/ " Wy

And the first integral alsg Venishes when n—co, provided that diu}fu is

Ny Y

) ¥

summable in (0, {7).

Thus we again have Q’mi’s Condition thab:

111, A sufficient eandition for the convergence of the Fourier's Sen'fes corre-
sponding io the f%wn f{x), summable in (-7, 7), 1? Jizo) ol a 'P"’”‘{ X M
(—=, m), wi'!;ere: %;Im';[f(a:ﬂ+k) +fig ~h)] exists und s equal to f{xm} is thirt

£/ i

{f( %426 %f(x,, ~2a) 2] (x‘:')} is gummable in some inlerval (0, ).
:i;\t;énditioz is satisfied when £(2) is summable in { ~ T, 7) and al the poi.nt
-”{Lr:l;&isﬁes Lipschitz's Condition; namely that gositive numbers O and k exisl
\"'quck et Lf{mg+ 1) —J{mo}] < O]k,
when |£] = some fixed positive number.
We can also show that:
IV. When f(x) is summable in { —m, 7},
neighbourhood of a point &g, the Fowrier’s Series converges there to
3 [f(my +0)+f% -0
Let f(x) be of bounded variation in the interval

P ¥ in{2n+ 1o
T i in (In+1)a " gin "
: oy S22 gy ) sin (41 1, (7 1) 2

and s of bounded variation in the

{2y — 2 To +2y}.

Ta the second integral we can apply the Riemann-Lebesgue Theorem; and in
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the first $(a) is of hounded variation; so the Lebesgue Integral and the
Riemann integral are the same. (Cf. § 1§ ahove.)

But the Riemann Integral has zere for its limit (ef. § 92}, and the required
result follows.

22, To show the full bearing of the Lebesgue Integral on the Theary of
Fourier's Series it would be neceasary to discuss at much greater length the
properties of that integral.

We have only touched upon these properties in the case of the integrals

b
i fix)drand i Flx)dz, where f{x) is summable in the bounded and measurahle
H N 2\

set E, or in (e, b). N\

The properties of the Indefinite Lebesgue Integral r Sxydx }1a§rn:not. heen
O %

dealt with at all. Some of them may be mentioned here withdut proof. In
several of the works naumed in the list of books at the endsdf this section a full

discussion of the Lebesgne Integral {and other associatbd® integrals) wilt be
found. ~\\.’

P 4 X A’
This integral F{z)= .a f{x)dx is continrous and sf'bounded varistion in the

interval {a, b}, when f{z) is summable ! d or not, in (&, b}

Also F{z) exista and is" é“&‘x‘;é Btlo&ﬁg%%%mﬁryw'herc in {a, ), and
certainly at ail points of continuity of f{E)}

And, further, if f{=) is a fanction }\?lﬁch has at every point of (a, b} a differ-
ential coefficient f(x), bounded jm, that interval, then f{x} iy integrable (£
in the interval (g, x) and its intégral differs from f{x) by a constant only.

In the case of the Riem r@lﬁtegra.l this last theorem is subject also to the
condition that f'({x) shall bé\integrable [ R).

N\
Ny REFERENCES,

The liter? hre dealing with the Theory of Sets of Points and the Lebesgue
Integral s other assaciated integrals is extensive.

Articles II C 9—entitled ** Neuwere Untersuchungen iber TFunktionen
reellég\Verénderlichen »__in the Enc. d. math. Wiss.,, Bd. 11, TL T, 2, will be
Tqupd useful. It is divided into three parts :

11C9 g, " Die Punktmengen,” by Zoretti and Rosenthal ;

ITC9H b, “ Integration und Differentiation,” by Monte! and Rosenthal ;
snd 11 C 9 ¢, * Funktionenfolgen,” by Fréchet and Rosenthal.

And the article I1C 16 in the same volume— NMeuere Untersuchungen iibet
trigonometriseche Reihen "—by Hilb and Riesz covers the work in. trigono-
metrical series up to about 1922,

In Pascal's Repertorium der kiheren Mathemalsl: 2 Aufl) Bd 1, T, 111,
Yhere are usefn] chapters: * Neueve Theorie der reclen Funktionen 7 (XX),
by Kamke, and “ Trigonometrische Reihen {(XXV), by Plessner. Both

bring their survey up to about the date of publication {1929}
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The following books are either devoted wholly to the subject, or contain
useful chapters bearing upon it :

Bores, Legons sur ln théorie des fonciions (3¢ ¢d., Paris, 1928 ; Legons sur
les fonctions de variables réelles et les développements en séries de polynomes
{2¢ éd., Paris, 1928),

DE LA Varogz Povssm, Cours 4" Analyse, 1 (3¢ éd., Paris, 1914) ; Intégrales
de Lebesgue {Paris, 1816},

CARATHRODORY, Vorlesungen tiber reells Funktionen (2 Aufl., Leipzig, 19{7)-

Hanw, Theorie der veellen Funktionen, 1 {Berlin, 1921).

Hausporrr, Mengeniehire (2 Aufl., Leipzig, 1927} 'S

7 A
Honsox, Theory of Funstions of @ Real Vuriable, 1 (3rd ed.. 1927, and
2 (2nd ed., 1026}, L
Kawwr, Das Debesguesche Integral (Leipzig, 1925} N

LEB®sQUE, Lecons sur Uintégration et lao recherche dgs:fonctions primitives
(2¢ éd., Paris, 1928} ; Legons sur les sérfes trigonomét{iq@ss (Paris, 1906).

PierpoNT, Theory of Punctions of Real Variables\NN1805) and 2 (1812},

ScHEsLivgER U. PLESSNER, Lebesguesche Infagrole und Fouriersche Eeihen
(Leipzig, 1926} R,

SeEONFLIES, Die Entwickelung der Leﬁr&'?ﬁr Punktmannigfaitigkeiten, T1. 1
(Jahresber. D. Math. Ver., Leipzig, 8 {1900)) ; TL II {ibid. Ergénzangshand,
1908). . www;dl:}gaulibrary_org,jn

SomoNFLIES U, Hanrw, Entwickiuny der Mengenlehre und ifire Anmnd:{ngen.
Erste Halfte: Allgemeine Tkeqrw der unendlichen Mengen und Theorie der
Punktmengen (Leipzig, 191355

ToNgLLL, Serie trigongmetricke (Bologna, 1928).

Youxa, W. H. and G, C., The Theory of Seis of Points (1908). _

Youwg, L. (, FheTheory of Integration {1927}, being No. 21 in the series of

. Cambridge Tracts in Mathematics and Mathematical Physics.

A%/
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The numbers refer to pages.
28 A
Abel’s Test for Uniform Convergence, 149, 4 ™
Abel’s Theorem on the Power Beries, 165; extensions of, 168, ¢ N
Absolute Convergence, of series, 50 ; of integrals, 117, 128, ™4
Absolute Value, 36. 7

Aggregate, peneral notion of, 33 ; bounded above (or (m‘tha nght}, 33; hounded
below {or on the left), 34: "bounded, 34 ; upperiand lower bounds of, 34 ;
Limiting pointa of, 35 ; Weierstrass’s Theorem en fimiting points of, 36,

Almaost everywhere, definition of, 16.

Approximation Curves for a Series, 139. See a%é\m Ribb2 Phenomenon,

Bocher's Treatment of the Glhbm&'hem%
Bounds (upper and lower), of an aggragate 34; uf f(g) ih an interval, 56 ; of
Jix, %) in a domain, 85.

Bromwich’s Theorem, 169, 3%

Cesaro’s Method of summing Series (C, 1), 169, 258-262,

Change of Order of Terms\tn an abeclutely convergent series, 51 ; i a conditionally
convergent serics,5%.

Clesed Interval, deﬁ}n;i:vn of, 85.

Conditional Contergence of Series, definition of, 1.

Continuity, of.fudetions, 66; of the sum of » vniformly convergent scriea of
continuous/funetions, 152 ; of the power series (Abel’a Theorem), 165; of

‘ f(\q}dz: when f{z) is bounded and integrable, 106; of ordinary integrals
of infinite integrals involving a single

ameter, 198, 202,

L‘ontmuous FPunctions, theorems on, 67;
" 86; non-differentiable, 9.

Contmuum arithmetical, 29 ; linear, 28.

Convergendcs, of sequences, 37 ; of series,
See alao nbsolute convergence, amdmonai CORVETHENCE,

Cosine Integral {Fourier’s Integral), 312, 320.
Gosine Series {Fourier's Series), 217, 234,
Countably Infinite,definition of, 21, 330..

:i a\ul\rmg & single parameter, 188;
integrability of, 97; of two variables,

47 ; of fanctions, 57 ; of integrals, 113, 121k,
and uniform convergence.

Darhoux’s Theorem, 92.

Dedekind's Axiom of Continuity, 28.

Dedekind's Sections, 24,

Dedekind’s Theory of Irrational Numbers, 23.

Dedekind’s Theorem on the System of Real Numbers, 27.
365
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Definite Inteprals containing an Arbitrary Parameter (Chapter V1); ordinary
integrals, 188; continuity, inlegration and differentiatinn of, 158 ; infinite
integrals, 192; wniform convergence of, 192; continaity, integration and
differentintion of, 198.

Definite Integrals, Ordinary (Chapter 1V); the sums 8 and = 81; Darboux’s
Theorent, 82 ; definition of upper aud lower integrals, 94 ; definition of, 94 ;
necessary and suflicient eonditions for existence, 95, 340 ; some properies of,
100 ; First Theorera of Mean Value, 105 ; considered as fimetions of the npper
limit, 106 ; Second Theorem of Mean Yalue, 107, Bee also Diricklet’s Integrals,
Fourier's Integrals, Infinite Integrals, Lebesque Integrals and Poisson’s Integral.

Differentiation, of Sories, 161 ; of power series, 167 ; of ordinary integrals, 189 ;
of infinite integrals, 200, 202 ; of Fourier's Neries, 282

Dini’s Condition, 273, 359, X ‘\
Dirichlet's Conditions, definition of, 226, A\
Dirichlet’s Integrals, 219. «
Dirichlet's Test for Uniform Convergence, 151. & “~

Discontinuity, of Functions, 73 ; classification of, 73, See also Taflui i scin fenasity
and Points of Infinite Discontinuity. S

N\
Divergence, of sequences, 41 ; of series, 48 ; of functions, 57 ; afintcgrals, 113, 126.

Enumerable. See Conntally ufinite, .\\:
$

Fejér's Theorem, 254, - Nt

Fejér's Theorem and the Convergence of Fourier's Series, 262, 280,

Fourier's Constants {or CDefﬁﬁ?‘éﬂ‘ié‘f,-‘é]hfi‘ﬂﬂl&?@f&l%rg‘m

Fourier's Integrals (Chapter X}; simple tr.eatt:mcnt. of. 812, more gencral con-
ditions for, 315; cosine and sine integrals, 320 ; Sommerfeld’s discussion
of, 321. RN

Fourier's Series, definition of, 215 ; (Amange's treatment of, 218 ; proof of con-
vergence of, under certain copflitions, 230; for even functions {the cosire
geries), 234 ; for odd fuuctions (Phe sine series), 241 5 for intervals olhier than
{ =, 7}, 248 ; Poisson’s difclssion of, 260 ; Fejér's Theorem, 254, 202, 280 ;
order of the terms in, 26‘3\\ dniform convergence of, 275 ; differentintion and
integration of, 282 ; moreNgeneral theury of, 271, 338.

Tunctions of a Single Variable, definition of, 55; bounded in an interval, 56 ; upper
and Jower bounds &f, /56 ; oscillation at a point, 66 oscillation in an interval,
56 ; limits of, 58; ontinuous, 66; discontinuous, 73 ; monotonic, 75, Inverss,
76 ; integrablé 97 of bounded variation, 80 ; measurabie, 342 ; summable, 352.

Punctions of w"é}a’l’ Variables, 84.

O\
General Pp}gclple of Jonvergence, of sequences, 38 ; of functions, 61.
Gibbs Phenomenon in Fourier’s Series (Chapter 1X), 289,

Hady-Landau Theorem, 259,
Harmonic Analyser {Kclvin's), 323.
Harmonic Analysis {Appendix T}, 323,
Heine-Borel Theorem, 71.

Improper Integrals, definition of, 126.

Infinite Aggregate. See Aggregate.

Infinite Discontinuity. See Poinds of Infinife Discontinuity.

Infinite Integrals {integrand function of a single variable), integrand bounded and
mterval_mﬁmtg_a?_11%; necessary and sufficiont condition for convergence of,
114; with positive integrand, 1135 absulute convergence of, 117; u-test for

(f:um-'lu;gonce of, 119 ; other tests for convergence of, 120 ; mean value thecrems
T, .
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Infinite Integrals (integrand function of a single variable), integrand infinite, 125 ;
p-test and uther tests for convergence of, 127 ; ahsolute convergence of, 128.

Infinite Integrals (integrand function of two variables), definition of uniform con-
vergence of, 193 ; tests for uniform eonvergence of, 193; contipuity, in-
tegration and differentiation of, 198, i

Infinite Sequences and Series. Bee Sequences and Series.

Infinity of a Punction, dofinition of, 74.

Integrable Funetions, 97 ; Integrable (L} and Integrable { R), definition of, 345.

Integration of Integrals (ovdinary}, 191 ; infinite, 199, 202, 200.

Integration of Series {ordinary infegrals), 156 ; power series, 167 ; Fourier'sSeries,
243 ; (infinite integrals), 172,

Interval, open, closed, open at one end and closcd ab the other, 55;, Qﬁetlapping
anel not-overlapping, 333 ; abutting, 333. A\ N

Inverse Functions, 76, L W

Irrational Numbers, See Numbera. & \

Lebesgue Definite Integral, of a bounded and meaﬂumhle?'function, 344 ; of a
gummable funetion, 3562, m\\
Lebesgue Indefinite Integral, 360. \/
Limits, of sequences, 37; of funclions, 56; of ant-ions of two variables, 85;
repeated, 142, Vo \d
Limifs of Indetermination, of a bounded seqqgﬁgé,'ﬁ ; of a bounded fdnction, 04.
Limiting Points of an Aggregafe, 35. PN
Lipschitz’s Condition, 273, 359. \ W g . .
Lower Integrals, definition of, waf.‘g;bmu“bral ¥-org-n
Mean Value Theorems of the Integral Caleulus ; first theorem {ordinary integrals),
105 ; (infinite integrals), «l€3% wecond theorem {ordinary integrals), 107;
{inlinite integrals), 123, ™
Measure of a Set of Pointa,é-‘iﬁ ; exterior measure, 333 ; interior, 334.
Measurable Sets of Pcfipts,\}l&.ﬁ.
Measurable Punetigns, 342.
Modulus, Hee Absolile Value,
Monotonic Pyndtichs, 75 ; admit only ordinary discontinuities, 76 ; integrability
of, BTN
Monotonjc inthe Stricter Sense, definftion of, 43, 75,
Monotenic Bequences, 42,
M-@\i for Convergence of Series, 148.
Pftﬂ}t for Convergence of Integrals, 119, 129,
Neighbourhood of a Poiut, definition of, 38. 51+ Dedokind's theory of rrationsl
" \Y - PR i H ekind 8 +
\ ) Numggr.s {rgg?‘p;;l: ILLS:#E?313%;35;;5;?%?&& system of real, 27 ; development ?f
tha,syste;n of'rcnl, 20, See also Dedekind’s Aziom of Continuity, and Dedekind’s
Sectiona,

Open Interval, definitivn of, B3

Ordinary or Simple Discontinuity, definition of, T4

Oscillation of 2 Function at a Point, G6.

Oscillation of a Function in an Interval, 56 ;
domain, 835

Oscillatory, Sequences, 41 ; series,

of a fonetion of two variables in 8
48 ; functions, 58; integrals, 113, 126,

Parseval’s Theorem, 284,

Partial Remainder {, B,,), definition of, 48; [z Ba(=)) definition of, 138.
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Periodogram Analysis, 326.

Points of Infinite Discontinuity, definition of, 75.

Points of Ostillatory Discontinuity, definition of, 74.

Poisson’s Discussion of Fourier’s Series, 250.

Poisson’s Integral, 251.

Power Series, interval of convergence of, 163 ; nature of convergence of, 165 ; Abel’s
theorsm on, 168 ; integration and differentiation of, 167.

Proper Integrals, definition of, 126.

Rafional Numbers and Rea! Numbers. See Numbers. N\
Remainder after = Terms ( R,), definition of, 40 ; [ R, ()], 135. N
Repeated Limits, 142. ¢\
Repeated Integrals, {ordinary), 101 ; (infinite), 199, 202, 209. O
Riemann-Lebesgue Theorem, 271, 357. R
Riesz-Fischer Theorem, 15. {4

Sections, See Dedekind’s Sections. m\\

Sequences ; convergent, 37; limit of, 37 ; necessary and suﬂipient condition fpr
convergence of {general principle of convergenee), 38’; divergent and oacil-
latory, 41 ; monotonie, 42. AW )

Series  deflnitiom of sum of an infinite, 47 ; converngrit, 47 ; divergent and osgll-
Iatory, 48 ; necessary amd sufficient conditibn for c’rm\'ergnncewuf, 45 ; ?ﬁ"}th
positive terms, 49 ; absulut.eEiﬂ(l cunditivgdl Counvergence of, 40 definition
of sum, when terms aid W o GRTRM L6 K B-dHin ble, 1;37_; uriform con-
vergenes of, 144 ; necessary and sufﬁpjg?nt condition for uniferm COLVETZRNee
of, 147; Weierstrass's 3 -test for wniferm convergence f»f,_ 148 ; gnlfnrm
convergence and continnuily of, 15205¢erm by term differentiation and integra-
tion of, 106.  See also Differentidtion of Keries, Fourier's Series, Integration of
Series, Power Series and Trigapometrical Series.

Sets of Points on a Line; Loufded, 33; limiting points of, 35; countable for
enumerable), 330 ; opet, 330t ‘closed, 330; interior and exterior points of, 5330 B
eomplement of, 331 ; ©perations on, 331 ; interior and exterior measure of, 3335
meagure of, 335 ; lilt‘gmrab]e. 335 ; negessary and sufficient condition that &
set be measurable, 336 ; properties of njeasurable sets, 337,

Simple {or Ordinary)Distontinuity, definition of, 74.

Sine Integral (Fouridr's Integral}, 312, 320.

Sine Series (Fgl\lgbr’s Heries), 217, 241,

Summable Ki‘?ctious. 352,

Summablé Seties (C, 1), definition of, 169,

Sums § and s, definition of, 01.

N\
\Tﬁgonomemcal Series, 215.

Uniform Continuity of a Funetion, 69, §7.

Uniform Convergence, of Series, 144; Abel's Test for, 149; Dirichlet’s Test for,
151; of Inteprals, 192,

TUniformly Bounded, (49,
Upper Integrals, definitton of, 94.

‘Weierstrass’s non-differentiable Continuoug Function, 90.
Welerstrass’s 3/-test for Uniform Convergence, 148.
‘Wedlerstrass's Theorem on Limiting Points of a Bounded Aggregate, 36.
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